uvgrtp-base/src/rtcp.cc

1591 lines
44 KiB
C++

#include "uvgrtp/rtcp.hh"
#include "hostname.hh"
#include "poll.hh"
#include "rtp.hh"
#include "srtp/srtcp.hh"
#include "rtcp_packets.hh"
#include "uvgrtp/debug.hh"
#include "uvgrtp/util.hh"
#include "uvgrtp/frame.hh"
#ifndef _WIN32
#include <sys/time.h>
#endif
#include <cassert>
#include <cstdlib>
#include <cstring>
#include <iostream>
/* TODO: explain these constants */
const uint32_t RTP_SEQ_MOD = 1 << 16;
const uint32_t MIN_SEQUENTIAL = 2;
const uint32_t MAX_DROPOUT = 3000;
const uint32_t MAX_MISORDER = 100;
const uint32_t DEFAULT_RTCP_INTERVAL_MS = 5000;
constexpr int ESTIMATED_MAX_RECEPTION_TIME_MS = 10;
const uint32_t MAX_SUPPORTED_PARTICIPANTS = 31;
uvgrtp::rtcp::rtcp(std::shared_ptr<uvgrtp::rtp> rtp, int flags):
flags_(flags), our_role_(RECEIVER),
tp_(0), tc_(0), tn_(0), pmembers_(0),
members_(0), senders_(0), rtcp_bandwidth_(0),
we_sent_(false), avg_rtcp_pkt_pize_(0), rtcp_pkt_count_(0),
rtcp_pkt_sent_count_(0), initial_(true), ssrc_(rtp->get_ssrc()),
num_receivers_(0),
sender_hook_(nullptr),
receiver_hook_(nullptr),
sdes_hook_(nullptr),
app_hook_(nullptr),
sr_hook_f_(nullptr),
sr_hook_u_(nullptr),
rr_hook_f_(nullptr),
rr_hook_u_(nullptr),
sdes_hook_f_(nullptr),
sdes_hook_u_(nullptr),
app_hook_f_(nullptr),
app_hook_u_(nullptr),
active_(false),
interval_ms_(DEFAULT_RTCP_INTERVAL_MS)
{
clock_rate_ = rtp->get_clock_rate();
clock_start_ = 0;
rtp_ts_start_ = 0;
report_generator_ = nullptr;
srtcp_ = nullptr;
zero_stats(&our_stats);
}
uvgrtp::rtcp::rtcp(std::shared_ptr<uvgrtp::rtp> rtp, std::shared_ptr<uvgrtp::srtcp> srtcp, int flags):
rtcp(rtp, flags)
{
srtcp_ = srtcp;
}
uvgrtp::rtcp::~rtcp()
{
if (active_)
{
stop();
}
}
void uvgrtp::rtcp::free_participant(rtcp_participant* participant)
{
participant->socket = nullptr;
if (participant->sr_frame)
{
delete participant->sr_frame;
}
if (participant->rr_frame)
{
delete participant->rr_frame;
}
if (participant->sdes_frame)
{
delete participant->sdes_frame;
}
if (participant->app_frame)
{
delete participant->app_frame;
}
delete participant;
}
rtp_error_t uvgrtp::rtcp::start()
{
if (sockets_.empty())
{
LOG_ERROR("Cannot start RTCP Runner because no connections have been initialized");
return RTP_INVALID_VALUE;
}
active_ = true;
report_generator_.reset(new std::thread(rtcp_runner, this, interval_ms_));
return RTP_OK;
}
rtp_error_t uvgrtp::rtcp::stop()
{
// TODO: Make thread safe. I think this kind of works, but not in a flexible way
if (!active_)
{
/* free all receiver statistic structs */
for (auto& participant : participants_)
{
free_participant(participant.second);
}
participants_.clear();
for (auto& participant : initial_participants_)
{
free_participant(participant);
}
initial_participants_.clear();
return RTP_OK;
}
active_ = false;
if (report_generator_ && report_generator_->joinable())
{
report_generator_->join();
}
/* when the member count is less than 50,
* we can just send the BYE message and destroy the session */
if (members_ >= 50)
{
tp_ = tc_;
members_ = 1;
pmembers_ = 1;
initial_ = true;
we_sent_ = false;
senders_ = 0;
}
/* Send BYE packet with our SSRC to all participants */
return uvgrtp::rtcp::send_bye_packet({ ssrc_ });
}
void uvgrtp::rtcp::rtcp_runner(rtcp* rtcp, int interval)
{
LOG_INFO("RTCP instance created! RTCP interval: %i ms", interval);
// RFC 3550 says to wait half interval before sending first report
int initial_sleep_ms = interval / 2;
LOG_DEBUG("Sleeping for %i ms before sending first RTCP report", initial_sleep_ms);
std::this_thread::sleep_for(std::chrono::milliseconds(initial_sleep_ms));
uint8_t buffer[MAX_PACKET];
uvgrtp::clock::hrc::hrc_t start = uvgrtp::clock::hrc::now();
int i = 0;
while (rtcp->is_active())
{
long int next_sendslot = i * interval;
long int run_time = uvgrtp::clock::hrc::diff_now(start);
long int diff_ms = next_sendslot - run_time;
if (diff_ms <= 0)
{
++i;
LOG_DEBUG("Sending RTCP report number %i at time slot %i ms", i, next_sendslot);
rtp_error_t ret = RTP_OK;
if ((ret = rtcp->generate_report()) != RTP_OK && ret != RTP_NOT_READY)
{
LOG_ERROR("Failed to send RTCP status report!");
}
} else if (diff_ms > ESTIMATED_MAX_RECEPTION_TIME_MS) { // try receiving if we have time
// Receive RTCP reports until time to send report
int nread = 0;
int poll_timout = diff_ms - ESTIMATED_MAX_RECEPTION_TIME_MS;
// using max poll we make sure that exiting uvgRTP doesn't take several seconds
int max_poll_timeout_ms = 100;
if (poll_timout > max_poll_timeout_ms)
{
poll_timout = max_poll_timeout_ms;
}
rtp_error_t ret = uvgrtp::poll::poll(rtcp->get_sockets(), buffer, MAX_PACKET,
poll_timout, &nread);
if (ret == RTP_OK && nread > 0)
{
(void)rtcp->handle_incoming_packet(buffer, (size_t)nread);
} else if (ret == RTP_INTERRUPTED) {
/* do nothing */
} else {
LOG_ERROR("recvfrom failed, %d", ret);
}
} else { // sleep until it is time to send the report
std::this_thread::sleep_for(std::chrono::milliseconds(diff_ms));
}
}
}
rtp_error_t uvgrtp::rtcp::add_participant(std::string dst_addr, uint16_t dst_port, uint16_t src_port, uint32_t clock_rate)
{
if (dst_addr == "" || !dst_port || !src_port)
{
LOG_ERROR("Invalid values given (%s, %d, %d), cannot create RTCP instance",
dst_addr.c_str(), dst_port, src_port);
return RTP_INVALID_VALUE;
}
rtp_error_t ret;
rtcp_participant *p;
p = new rtcp_participant();
zero_stats(&p->stats);
p->socket = std::shared_ptr<uvgrtp::socket> (new uvgrtp::socket(0));
if ((ret = p->socket->init(AF_INET, SOCK_DGRAM, 0)) != RTP_OK)
{
return ret;
}
int enable = 1;
if ((ret = p->socket->setsockopt(SOL_SOCKET, SO_REUSEADDR, (const char *)&enable, sizeof(int))) != RTP_OK)
{
return ret;
}
#ifdef _WIN32
/* Make the socket non-blocking */
int enabled = 1;
if (::ioctlsocket(p->socket->get_raw_socket(), FIONBIO, (u_long *)&enabled) < 0)
{
LOG_ERROR("Failed to make the socket non-blocking!");
}
#endif
/* Set read timeout (5s for now)
*
* This means that the socket is listened for 5s at a time and after the timeout,
* Send Report is sent to all participants */
struct timeval tv;
tv.tv_sec = 3;
tv.tv_usec = 0;
if ((ret = p->socket->setsockopt(SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv))) != RTP_OK)
{
return ret;
}
LOG_WARN("Binding to port %d (source port)", src_port);
if ((ret = p->socket->bind(AF_INET, INADDR_ANY, src_port)) != RTP_OK)
{
return ret;
}
p->role = RECEIVER;
p->address = p->socket->create_sockaddr(AF_INET, dst_addr, dst_port);
p->stats.clock_rate = clock_rate;
initial_participants_.push_back(p);
sockets_.push_back(*p->socket);
return RTP_OK;
}
rtp_error_t uvgrtp::rtcp::add_participant(uint32_t ssrc)
{
if (num_receivers_ == MAX_SUPPORTED_PARTICIPANTS)
{
LOG_ERROR("Maximum number of RTCP participants reached.");
// TODO: Support more participants by sending multiple messages at the same time
return RTP_GENERIC_ERROR;
}
/* RTCP is not in use for this media stream,
* create a "fake" participant that is only used for storing statistics information */
if (initial_participants_.empty())
{
participants_[ssrc] = new rtcp_participant();
zero_stats(&participants_[ssrc]->stats);
} else {
participants_[ssrc] = initial_participants_.back();
initial_participants_.pop_back();
}
num_receivers_++;
participants_[ssrc]->rr_frame = nullptr;
participants_[ssrc]->sr_frame = nullptr;
participants_[ssrc]->sdes_frame = nullptr;
participants_[ssrc]->app_frame = nullptr;
return RTP_OK;
}
rtp_error_t uvgrtp::rtcp::remove_all_hooks()
{
sr_mutex_.lock();
sender_hook_ = nullptr;
sr_hook_f_ = nullptr;
sr_hook_u_ = nullptr;
sr_mutex_.unlock();
rr_mutex_.lock();
receiver_hook_ = nullptr;
rr_hook_f_ = nullptr;
rr_hook_u_ = nullptr;
rr_mutex_.unlock();
sdes_mutex_.lock();
sdes_hook_ = nullptr;
sdes_hook_f_ = nullptr;
sdes_hook_u_ = nullptr;
sdes_mutex_.unlock();
app_mutex_.lock();
app_hook_ = nullptr;
app_hook_f_ = nullptr;
app_hook_u_ = nullptr;
app_mutex_.unlock();
return RTP_OK;
}
rtp_error_t uvgrtp::rtcp::install_sender_hook(void (*hook)(uvgrtp::frame::rtcp_sender_report*))
{
if (!hook)
{
return RTP_INVALID_VALUE;
}
sr_mutex_.lock();
sender_hook_ = hook;
sr_hook_f_ = nullptr;
sr_hook_u_ = nullptr;
sr_mutex_.unlock();
return RTP_OK;
}
rtp_error_t uvgrtp::rtcp::install_sender_hook(std::function<void(std::shared_ptr<uvgrtp::frame::rtcp_sender_report>)> sr_handler)
{
if (!sr_handler)
{
return RTP_INVALID_VALUE;
}
sr_mutex_.lock();
sender_hook_ = nullptr;
sr_hook_f_ = sr_handler;
sr_hook_u_ = nullptr;
sr_mutex_.unlock();
return RTP_OK;
}
rtp_error_t uvgrtp::rtcp::install_sender_hook(std::function<void(std::unique_ptr<uvgrtp::frame::rtcp_sender_report>)> sr_handler)
{
if (!sr_handler)
{
return RTP_INVALID_VALUE;
}
sr_mutex_.lock();
sender_hook_ = nullptr;
sr_hook_f_ = nullptr;
sr_hook_u_ = sr_handler;
sr_mutex_.unlock();
return RTP_OK;
}
rtp_error_t uvgrtp::rtcp::install_receiver_hook(void (*hook)(uvgrtp::frame::rtcp_receiver_report*))
{
if (!hook)
{
return RTP_INVALID_VALUE;
}
rr_mutex_.lock();
receiver_hook_ = hook;
rr_hook_f_ = nullptr;
rr_hook_u_ = nullptr;
rr_mutex_.unlock();
return RTP_OK;
}
rtp_error_t uvgrtp::rtcp::install_receiver_hook(std::function<void(std::shared_ptr<uvgrtp::frame::rtcp_receiver_report>)> rr_handler)
{
if (!rr_handler)
{
return RTP_INVALID_VALUE;
}
rr_mutex_.lock();
receiver_hook_ = nullptr;
rr_hook_f_ = rr_handler;
rr_hook_u_ = nullptr;
rr_mutex_.unlock();
return RTP_OK;
}
rtp_error_t uvgrtp::rtcp::install_receiver_hook(std::function<void(std::unique_ptr<uvgrtp::frame::rtcp_receiver_report>)> rr_handler)
{
if (!rr_handler)
{
return RTP_INVALID_VALUE;
}
rr_mutex_.lock();
receiver_hook_ = nullptr;
rr_hook_f_ = nullptr;
rr_hook_u_ = rr_handler;
rr_mutex_.unlock();
return RTP_OK;
}
rtp_error_t uvgrtp::rtcp::install_sdes_hook(void (*hook)(uvgrtp::frame::rtcp_sdes_packet*))
{
if (!hook)
{
return RTP_INVALID_VALUE;
}
sdes_mutex_.lock();
sdes_hook_ = hook;
sdes_hook_f_ = nullptr;
sdes_hook_u_ = nullptr;
sdes_mutex_.unlock();
return RTP_OK;
}
rtp_error_t uvgrtp::rtcp::install_sdes_hook(std::function<void(std::shared_ptr<uvgrtp::frame::rtcp_sdes_packet>)> sdes_handler)
{
if (!sdes_handler)
{
return RTP_INVALID_VALUE;
}
sdes_mutex_.lock();
sdes_hook_ = nullptr;
sdes_hook_f_ = sdes_handler;
sdes_hook_u_ = nullptr;
sdes_mutex_.unlock();
return RTP_OK;
}
rtp_error_t uvgrtp::rtcp::install_sdes_hook(std::function<void(std::unique_ptr<uvgrtp::frame::rtcp_sdes_packet>)> sdes_handler)
{
if (!sdes_handler)
{
return RTP_INVALID_VALUE;
}
sdes_mutex_.lock();
sdes_hook_ = nullptr;
sdes_hook_f_ = nullptr;
sdes_hook_u_ = sdes_handler;
sdes_mutex_.unlock();
return RTP_OK;
}
rtp_error_t uvgrtp::rtcp::install_app_hook(void (*hook)(uvgrtp::frame::rtcp_app_packet*))
{
if (!hook)
{
return RTP_INVALID_VALUE;
}
app_mutex_.lock();
app_hook_ = hook;
app_hook_f_ = nullptr;
app_hook_u_ = nullptr;
app_mutex_.unlock();
return RTP_OK;
}
rtp_error_t uvgrtp::rtcp::install_app_hook(std::function<void(std::shared_ptr<uvgrtp::frame::rtcp_app_packet>)> app_handler)
{
if (!app_handler)
{
return RTP_INVALID_VALUE;
}
app_mutex_.lock();
app_hook_ = nullptr;
app_hook_f_ = app_handler;
app_hook_u_ = nullptr;
app_mutex_.unlock();
return RTP_OK;
}
rtp_error_t uvgrtp::rtcp::install_app_hook(std::function<void(std::unique_ptr<uvgrtp::frame::rtcp_app_packet>)> app_handler)
{
if (!app_handler)
{
return RTP_INVALID_VALUE;
}
app_mutex_.lock();
app_hook_ = nullptr;
app_hook_f_ = nullptr;
app_hook_u_ = app_handler;
app_mutex_.unlock();
return RTP_OK;
}
uvgrtp::frame::rtcp_sender_report* uvgrtp::rtcp::get_sender_packet(uint32_t ssrc)
{
if (participants_.find(ssrc) == participants_.end())
{
return nullptr;
}
sr_mutex_.lock();
auto frame = participants_[ssrc]->sr_frame;
participants_[ssrc]->sr_frame = nullptr;
sr_mutex_.unlock();
return frame;
}
uvgrtp::frame::rtcp_receiver_report* uvgrtp::rtcp::get_receiver_packet(uint32_t ssrc)
{
if (participants_.find(ssrc) == participants_.end())
{
return nullptr;
}
rr_mutex_.lock();
auto frame = participants_[ssrc]->rr_frame;
participants_[ssrc]->rr_frame = nullptr;
rr_mutex_.unlock();
return frame;
}
uvgrtp::frame::rtcp_sdes_packet* uvgrtp::rtcp::get_sdes_packet(uint32_t ssrc)
{
if (participants_.find(ssrc) == participants_.end())
{
return nullptr;
}
sdes_mutex_.lock();
auto frame = participants_[ssrc]->sdes_frame;
participants_[ssrc]->sdes_frame = nullptr;
sdes_mutex_.unlock();
return frame;
}
uvgrtp::frame::rtcp_app_packet* uvgrtp::rtcp::get_app_packet(uint32_t ssrc)
{
if (participants_.find(ssrc) == participants_.end())
{
return nullptr;
}
app_mutex_.lock();
auto frame = participants_[ssrc]->app_frame;
participants_[ssrc]->app_frame = nullptr;
app_mutex_.unlock();
return frame;
}
std::vector<uvgrtp::socket>& uvgrtp::rtcp::get_sockets()
{
return sockets_;
}
std::vector<uint32_t> uvgrtp::rtcp::get_participants() const
{
std::vector<uint32_t> ssrcs;
for (auto& i : participants_)
{
ssrcs.push_back(i.first);
}
return ssrcs;
}
void uvgrtp::rtcp::update_rtcp_bandwidth(size_t pkt_size)
{
rtcp_pkt_count_ += 1;
rtcp_byte_count_ += pkt_size + UDP_HDR_SIZE + IPV4_HDR_SIZE;
avg_rtcp_pkt_pize_ = rtcp_byte_count_ / rtcp_pkt_count_;
}
void uvgrtp::rtcp::zero_stats(uvgrtp::sender_statistics *stats)
{
stats->sent_pkts = 0;
stats->sent_bytes = 0;
stats->sent_rtp_packet = false;
}
void uvgrtp::rtcp::zero_stats(uvgrtp::receiver_statistics *stats)
{
stats->received_pkts = 0;
stats->dropped_pkts = 0;
stats->received_bytes = 0;
stats->received_rtp_packet = false;
stats->jitter = 0;
stats->transit = 0;
stats->initial_ntp = 0;
stats->initial_rtp = 0;
stats->clock_rate = 0;
stats->lsr = 0;
stats->max_seq = 0;
stats->base_seq = 0;
stats->bad_seq = 0;
stats->cycles = 0;
}
bool uvgrtp::rtcp::is_participant(uint32_t ssrc) const
{
return participants_.find(ssrc) != participants_.end();
}
void uvgrtp::rtcp::set_ts_info(uint64_t clock_start, uint32_t clock_rate, uint32_t rtp_ts_start)
{
clock_start_ = clock_start;
clock_rate_ = clock_rate;
rtp_ts_start_ = rtp_ts_start;
}
void uvgrtp::rtcp::sender_update_stats(const uvgrtp::frame::rtp_frame *frame)
{
if (!frame)
{
return;
}
if (frame->payload_len > UINT32_MAX)
{
LOG_ERROR("Payload size larger than uint32 max which is not supported by RFC 3550");
return;
}
our_stats.sent_pkts += 1;
our_stats.sent_bytes += (uint32_t)frame->payload_len;
our_stats.sent_rtp_packet = true;
}
rtp_error_t uvgrtp::rtcp::init_new_participant(const uvgrtp::frame::rtp_frame *frame)
{
rtp_error_t ret;
if ((ret = uvgrtp::rtcp::add_participant(frame->header.ssrc)) != RTP_OK)
{
return ret;
}
if ((ret = uvgrtp::rtcp::init_participant_seq(frame->header.ssrc, frame->header.seq)) != RTP_OK)
{
return ret;
}
/* Set the probation to MIN_SEQUENTIAL (2)
*
* What this means is that we must receive at least two packets from SSRC
* with sequential RTP sequence numbers for this peer to be considered valid */
participants_[frame->header.ssrc]->probation = MIN_SEQUENTIAL;
/* This is the first RTP frame from remote to frame->header.timestamp represents t = 0
* Save the timestamp and current NTP timestamp so we can do jitter calculations later on */
participants_[frame->header.ssrc]->stats.initial_rtp = frame->header.timestamp;
participants_[frame->header.ssrc]->stats.initial_ntp = uvgrtp::clock::ntp::now();
senders_++;
return ret;
}
rtp_error_t uvgrtp::rtcp::update_sender_stats(size_t pkt_size)
{
if (our_role_ == RECEIVER)
{
our_role_ = SENDER;
}
if (our_stats.sent_bytes + pkt_size > UINT32_MAX)
{
LOG_ERROR("Sent bytes overflow");
}
our_stats.sent_pkts += 1;
our_stats.sent_bytes += (uint32_t)pkt_size;
our_stats.sent_rtp_packet = true;
return RTP_OK;
}
rtp_error_t uvgrtp::rtcp::init_participant_seq(uint32_t ssrc, uint16_t base_seq)
{
if (participants_.find(ssrc) == participants_.end())
{
return RTP_NOT_FOUND;
}
participants_[ssrc]->stats.base_seq = base_seq;
participants_[ssrc]->stats.max_seq = base_seq;
participants_[ssrc]->stats.bad_seq = (RTP_SEQ_MOD + 1)%UINT32_MAX;
return RTP_OK;
}
rtp_error_t uvgrtp::rtcp::update_participant_seq(uint32_t ssrc, uint16_t seq)
{
if (participants_.find(ssrc) == participants_.end())
{
LOG_ERROR("Did not find participant SSRC when updating seq");
return RTP_GENERIC_ERROR;
}
auto p = participants_[ssrc];
uint16_t udelta = seq - p->stats.max_seq;
/* Source is not valid until MIN_SEQUENTIAL packets with
* sequential sequence numbers have been received. */
if (p->probation)
{
/* packet is in sequence */
if (seq == p->stats.max_seq + 1)
{
p->probation--;
p->stats.max_seq = seq;
if (!p->probation)
{
uvgrtp::rtcp::init_participant_seq(ssrc, seq);
return RTP_OK;
}
} else {
p->probation = MIN_SEQUENTIAL - 1;
p->stats.max_seq = seq;
}
return RTP_NOT_READY;
} else if (udelta < MAX_DROPOUT) {
/* in order, with permissible gap */
if (seq < p->stats.max_seq)
{
/* Sequence number wrapped - count another 64K cycle. */
p->stats.cycles += RTP_SEQ_MOD;
}
p->stats.max_seq = seq;
} else if (udelta <= RTP_SEQ_MOD - MAX_MISORDER) {
/* the sequence number made a very large jump */
if (seq == p->stats.bad_seq)
{
/* Two sequential packets -- assume that the other side
* restarted without telling us so just re-sync
* (i.e., pretend this was the first packet). */
uvgrtp::rtcp::init_participant_seq(ssrc, seq);
} else {
p->stats.bad_seq = (seq + 1) & (RTP_SEQ_MOD - 1);
LOG_ERROR("Invalid sequence number. Seq jump: %u -> %u", p->stats.max_seq, seq);
return RTP_GENERIC_ERROR;
}
} else {
/* duplicate or reordered packet */
}
return RTP_OK;
}
rtp_error_t uvgrtp::rtcp::reset_rtcp_state(uint32_t ssrc)
{
if (participants_.find(ssrc) != participants_.end())
{
return RTP_SSRC_COLLISION;
}
zero_stats(&our_stats);
return RTP_OK;
}
bool uvgrtp::rtcp::collision_detected(uint32_t ssrc, const sockaddr_in& src_addr) const
{
if (participants_.find(ssrc) == participants_.end())
{
return false;
}
auto sender = participants_.at(ssrc);
if (src_addr.sin_port != sender->address.sin_port &&
src_addr.sin_addr.s_addr != sender->address.sin_addr.s_addr)
{
return true;
}
return false;
}
void uvgrtp::rtcp::update_session_statistics(const uvgrtp::frame::rtp_frame *frame)
{
auto p = participants_[frame->header.ssrc];
p->stats.received_rtp_packet = true;
p->stats.received_pkts += 1;
p->stats.received_bytes += (uint32_t)frame->payload_len;
/* calculate number of dropped packets */
int extended_max = p->stats.cycles + p->stats.max_seq;
int expected = extended_max - p->stats.base_seq + 1;
int dropped = expected - p->stats.received_pkts;
p->stats.dropped_pkts = dropped >= 0 ? dropped : 0;
// the arrival time expressed as an RTP timestamp
uint32_t arrival =
p->stats.initial_rtp +
+ (uint32_t)uvgrtp::clock::ntp::diff_now(p->stats.initial_ntp)*(p->stats.clock_rate / 1000);
// calculate interarrival jitter. See RFC 3550 A.8
uint32_t transit = arrival - frame->header.timestamp; // A.8: int transit = arrival - r->ts
uint32_t trans_difference = std::abs((int)(transit - p->stats.transit));
// update statistics
p->stats.transit = transit;
p->stats.jitter += (1.f / 16.f) * ((double)trans_difference - p->stats.jitter);
}
/* RTCP packet handler is responsible for doing two things:
*
* - it checks whether the packet is coming from an existing user and if so,
* updates that user's session statistics. If the packet is coming from a user,
* the user is put on probation where they will stay until enough valid packets
* have been received.
* - it keeps track of participants' SSRCs and if a collision
* is detected, the RTP context is updated */
rtp_error_t uvgrtp::rtcp::recv_packet_handler(void *arg, int flags, frame::rtp_frame **out)
{
(void)flags;
// The validity of the header has been checked by previous handlers
uvgrtp::frame::rtp_frame *frame = *out;
uvgrtp::rtcp *rtcp = (uvgrtp::rtcp *)arg;
/* If this is the first packet from remote, move the participant from initial_participants_
* to participants_, initialize its state and put it on probation until enough valid
* packets from them have been received
*
* Otherwise update and monitor the received sequence numbers to determine whether something
* has gone awry with the sender's sequence number calculations/delivery of packets */
rtp_error_t ret = RTP_OK;
if (!rtcp->is_participant(frame->header.ssrc))
{
if ((rtcp->init_new_participant(frame)) != RTP_OK)
{
LOG_ERROR("Failed to initiate new participant");
return RTP_GENERIC_ERROR;
}
} else if ((ret = rtcp->update_participant_seq(frame->header.ssrc, frame->header.seq)) != RTP_OK) {
if (ret == RTP_NOT_READY) {
return RTP_OK;
}
else {
LOG_ERROR("Failed to update participant with seq %u", frame->header.seq);
return ret;
}
}
/* Finally update the jitter/transit/received/dropped bytes/pkts statistics */
rtcp->update_session_statistics(frame);
/* Even though RTCP collects information from the packet, this is not the packet's final destination.
* Thus return RTP_PKT_NOT_HANDLED to indicate that the packet should be passed on to other handlers */
return RTP_PKT_NOT_HANDLED;
}
rtp_error_t uvgrtp::rtcp::send_packet_handler_vec(void *arg, uvgrtp::buf_vec& buffers)
{
ssize_t pkt_size = -uvgrtp::frame::HEADER_SIZE_RTP;
for (auto& buffer : buffers)
{
pkt_size += buffer.first;
}
if (pkt_size < 0)
{
return RTP_INVALID_VALUE;
}
return ((uvgrtp::rtcp *)arg)->update_sender_stats(pkt_size);
}
rtp_error_t uvgrtp::rtcp::handle_incoming_packet(uint8_t *buffer, size_t size)
{
size_t ptr = 0;
size_t remaining_size = size;
while (remaining_size > 0)
{
if (remaining_size < RTCP_HEADER_LENGTH)
{
LOG_ERROR("Didn't get enough data for an rtcp header");
return RTP_INVALID_VALUE;
}
uint8_t* packet_location = buffer + ptr;
uvgrtp::frame::rtcp_header header;
read_rtcp_header(packet_location + ptr, header);
// the length field is the rtcp packet size measured in 32-bit words - 1
uint32_t size_of_rtcp_packet = (header.length + 1) * sizeof(uint32_t);
if (remaining_size < size_of_rtcp_packet)
{
LOG_ERROR("Received a partial rtcp packet. Not supported!");
return RTP_NOT_SUPPORTED;
}
if (header.version != 0x2)
{
LOG_ERROR("Invalid header version (%u)", header.version);
return RTP_INVALID_VALUE;
}
if (header.padding)
{
LOG_ERROR("Cannot handle padded packets!");
return RTP_INVALID_VALUE;
}
if (header.pkt_type > uvgrtp::frame::RTCP_FT_APP ||
header.pkt_type < uvgrtp::frame::RTCP_FT_SR)
{
LOG_ERROR("Invalid packet type (%u)!", header.pkt_type);
return RTP_INVALID_VALUE;
}
update_rtcp_bandwidth(size_of_rtcp_packet);
rtp_error_t ret = RTP_INVALID_VALUE;
switch (header.pkt_type)
{
case uvgrtp::frame::RTCP_FT_SR:
ret = handle_sender_report_packet(packet_location, size_of_rtcp_packet, header);
break;
case uvgrtp::frame::RTCP_FT_RR:
ret = handle_receiver_report_packet(packet_location, size_of_rtcp_packet, header);
break;
case uvgrtp::frame::RTCP_FT_SDES:
ret = handle_sdes_packet(packet_location, size_of_rtcp_packet, header);
break;
case uvgrtp::frame::RTCP_FT_BYE:
ret = handle_bye_packet(packet_location, size_of_rtcp_packet);
break;
case uvgrtp::frame::RTCP_FT_APP:
ret = handle_app_packet(packet_location, size_of_rtcp_packet, header);
break;
default:
LOG_WARN("Unknown packet received, type %d", header.pkt_type);
break;
}
if (ret != RTP_OK)
{
return ret;
}
ptr += size_of_rtcp_packet;
remaining_size -= size_of_rtcp_packet;
}
return RTP_OK;
}
rtp_error_t uvgrtp::rtcp::handle_sdes_packet(uint8_t* packet, size_t size,
uvgrtp::frame::rtcp_header& header)
{
if (!packet || !size)
{
return RTP_INVALID_VALUE;
}
auto frame = new uvgrtp::frame::rtcp_sdes_packet;
frame->header = header;
frame->ssrc = ntohl(*(uint32_t*)&packet[4]);
auto ret = RTP_OK;
if (srtcp_ && (ret = srtcp_->handle_rtcp_decryption(flags_, frame->ssrc, packet, size)) != RTP_OK)
{
delete frame;
return ret;
}
uint32_t rtcp_packet_size = (frame->header.length + 1) * sizeof(uint32_t);
for (int ptr = 8; ptr < rtcp_packet_size; )
{
uvgrtp::frame::rtcp_sdes_item item;
item.type = packet[ptr++];
item.length = packet[ptr++];
item.data = (void*)new uint8_t[item.length];
memcpy(item.data, &packet[ptr], item.length);
ptr += item.length; // TODO: Clang warning here
}
sdes_mutex_.lock();
if (sdes_hook_) {
sdes_hook_(frame);
} else if (sdes_hook_f_) {
sdes_hook_f_(std::shared_ptr<uvgrtp::frame::rtcp_sdes_packet>(frame));
} else if (sdes_hook_u_) {
sdes_hook_u_(std::unique_ptr<uvgrtp::frame::rtcp_sdes_packet>(frame));
} else {
/* Deallocate previous frame from the buffer if it exists, it's going to get overwritten */
if (participants_[frame->ssrc]->sdes_frame)
{
for (auto& item : participants_[frame->ssrc]->sdes_frame->items)
{
delete[](uint8_t*)item.data;
}
delete participants_[frame->ssrc]->sdes_frame;
}
participants_[frame->ssrc]->sdes_frame = frame;
}
sdes_mutex_.unlock();
return RTP_OK;
}
rtp_error_t uvgrtp::rtcp::handle_bye_packet(uint8_t* packet, size_t size)
{
if (!packet || !size)
{
return RTP_INVALID_VALUE;
}
for (size_t i = 4; i < size; i += sizeof(uint32_t))
{
uint32_t ssrc = ntohl(*(uint32_t*)&packet[i]);
if (!is_participant(ssrc))
{
LOG_WARN("Participants 0x%x is not part of this group!", ssrc);
continue;
}
participants_[ssrc]->socket = nullptr;
delete participants_[ssrc];
participants_.erase(ssrc);
}
return RTP_OK;
}
rtp_error_t uvgrtp::rtcp::handle_app_packet(uint8_t* packet, size_t size,
uvgrtp::frame::rtcp_header& header)
{
if (!packet || !size)
{
return RTP_INVALID_VALUE;
}
auto frame = new uvgrtp::frame::rtcp_app_packet;
frame->header = header;
frame->ssrc = ntohl(*(uint32_t*)&packet[4]);
auto ret = RTP_OK;
if (srtcp_ && (ret = srtcp_->handle_rtcp_decryption(flags_, frame->ssrc, packet, size)) != RTP_OK)
{
delete frame;
return ret;
}
/* Deallocate previous frame from the buffer if it exists, it's going to get overwritten */
if (!is_participant(frame->ssrc))
{
LOG_WARN("Got an APP packet from an unknown participant");
add_participant(frame->ssrc);
}
uint32_t rtcp_packet_size = (frame->header.length + 1) * sizeof(uint32_t);
uint32_t application_data_size = rtcp_packet_size
- (RTCP_HEADER_SIZE + SSRC_CSRC_SIZE + APP_NAME_SIZE);
// application data is saved to payload
frame->payload = new uint8_t[application_data_size];
// copy app name and application-dependent data from network packet to RTCP structures
memcpy(frame->name, &packet[RTCP_HEADER_SIZE + SSRC_CSRC_SIZE], APP_NAME_SIZE);
memcpy(frame->payload, &packet[RTCP_HEADER_SIZE + SSRC_CSRC_SIZE + APP_NAME_SIZE],
application_data_size);
app_mutex_.lock();
if (app_hook_) {
app_hook_(frame);
} else if (app_hook_f_) {
app_hook_f_(std::shared_ptr<uvgrtp::frame::rtcp_app_packet>(frame));
} else if (app_hook_u_) {
app_hook_u_(std::unique_ptr<uvgrtp::frame::rtcp_app_packet>(frame));
} else {
if (participants_[frame->ssrc]->app_frame)
{
delete[] participants_[frame->ssrc]->app_frame->payload;
delete participants_[frame->ssrc]->app_frame;
}
participants_[frame->ssrc]->app_frame = frame;
}
app_mutex_.unlock();
return RTP_OK;
}
rtp_error_t uvgrtp::rtcp::handle_receiver_report_packet(uint8_t* packet, size_t size,
uvgrtp::frame::rtcp_header& header)
{
if (!packet || !size)
{
return RTP_INVALID_VALUE;
}
auto frame = new uvgrtp::frame::rtcp_receiver_report;
frame->header = header;
frame->ssrc = ntohl(*(uint32_t*)&packet[RTCP_HEADER_SIZE]);
auto ret = RTP_OK;
if (srtcp_ && (ret = srtcp_->handle_rtcp_decryption(flags_, frame->ssrc, packet, size)) != RTP_OK)
{
delete frame;
return ret;
}
/* Receiver Reports are sent from participant that don't send RTP packets
* This means that the sender of this report is not in the participants_ map
* but rather in the initial_participants_ vector
*
* Check if that's the case and if so, move the entry from initial_participants_ to participants_ */
if (!is_participant(frame->ssrc))
{
LOG_WARN("Got a Receiver Report from an unknown participant");
add_participant(frame->ssrc);
}
if (!frame->header.count)
{
LOG_ERROR("Receiver Report cannot have 0 report blocks!");
return RTP_INVALID_VALUE;
}
read_reports(packet, size, frame->header.count, false, frame->report_blocks);
rr_mutex_.lock();
if (receiver_hook_) {
receiver_hook_(frame);
} else if (rr_hook_f_) {
rr_hook_f_(std::shared_ptr<uvgrtp::frame::rtcp_receiver_report>(frame));
} else if (rr_hook_u_) {
rr_hook_u_(std::unique_ptr<uvgrtp::frame::rtcp_receiver_report>(frame));
} else {
/* Deallocate previous frame from the buffer if it exists, it's going to get overwritten */
if (participants_[frame->ssrc]->rr_frame)
{
delete participants_[frame->ssrc]->rr_frame;
}
participants_[frame->ssrc]->rr_frame = frame;
}
rr_mutex_.unlock();
return RTP_OK;
}
rtp_error_t uvgrtp::rtcp::handle_sender_report_packet(uint8_t* packet, size_t size,
uvgrtp::frame::rtcp_header& header)
{
if (!packet || !size)
{
return RTP_INVALID_VALUE;
}
auto frame = new uvgrtp::frame::rtcp_sender_report;
frame->header = header;
frame->ssrc = ntohl(*(uint32_t*)&packet[4]);
auto ret = RTP_OK;
if (srtcp_ && (ret = srtcp_->handle_rtcp_decryption(flags_, frame->ssrc, packet, size)) != RTP_OK)
{
delete frame;
return ret;
}
if (!is_participant(frame->ssrc))
{
LOG_WARN("Sender Report received from an unknown participant");
add_participant(frame->ssrc);
}
frame->sender_info.ntp_msw = ntohl(*(uint32_t*)&packet[8]);
frame->sender_info.ntp_lsw = ntohl(*(uint32_t*)&packet[12]);
frame->sender_info.rtp_ts = ntohl(*(uint32_t*)&packet[16]);
frame->sender_info.pkt_cnt = ntohl(*(uint32_t*)&packet[20]);
frame->sender_info.byte_cnt = ntohl(*(uint32_t*)&packet[24]);
participants_[frame->ssrc]->stats.sr_ts = uvgrtp::clock::hrc::now();
participants_[frame->ssrc]->stats.lsr =
((frame->sender_info.ntp_msw & 0xffff) << 16) |
(frame->sender_info.ntp_lsw >> 16);
read_reports(packet, size, frame->header.count, true, frame->report_blocks);
sr_mutex_.lock();
if (sender_hook_) {
sender_hook_(frame);
} else if (sr_hook_f_) {
sr_hook_f_(std::shared_ptr<uvgrtp::frame::rtcp_sender_report>(frame));
} else if (sr_hook_u_) {
sr_hook_u_(std::unique_ptr<uvgrtp::frame::rtcp_sender_report>(frame));
} else {
/* Deallocate previous frame from the buffer if it exists, it's going to get overwritten */
if (participants_[frame->ssrc]->sr_frame)
{
delete participants_[frame->ssrc]->sr_frame;
}
participants_[frame->ssrc]->sr_frame = frame;
}
sr_mutex_.unlock();
return RTP_OK;
}
rtp_error_t uvgrtp::rtcp::construct_rtcp_header(size_t packet_size,
uint8_t*& frame,
uint16_t secondField,
uvgrtp::frame::RTCP_FRAME_TYPE frame_type,
bool add_local_ssrc
)
{
if (packet_size > UINT16_MAX)
{
LOG_ERROR("RTCP receiver report packet size too large!");
return RTP_GENERIC_ERROR;
}
frame = new uint8_t[packet_size];
memset(frame, 0, packet_size);
// header |V=2|P| SC | PT | length |
frame[0] = (2 << 6) | (0 << 5) | secondField;
frame[1] = frame_type;
// The RTCP header length field is measured in 32-bit words - 1
*(uint16_t*)&frame[2] = htons((uint16_t)packet_size/sizeof(uint32_t) - 1);
if (add_local_ssrc)
{
*(uint32_t*)&frame[RTCP_HEADER_SIZE] = htonl(ssrc_);
}
return RTP_OK;
}
void uvgrtp::rtcp::read_rtcp_header(const uint8_t* packet, uvgrtp::frame::rtcp_header& header)
{
header.version = (packet[0] >> 6) & 0x3;
header.padding = (packet[0] >> 5) & 0x1;
header.pkt_type = packet[1] & 0xff;
if (header.pkt_type == uvgrtp::frame::RTCP_FT_APP)
{
header.pkt_subtype = packet[0] & 0x1f;
} else {
header.count = packet[0] & 0x1f;
}
header.length = ntohs(*(uint16_t*)&packet[2]);
}
void uvgrtp::rtcp::read_reports(const uint8_t* packet, size_t size, uint8_t count, bool has_sender_block,
std::vector<uvgrtp::frame::rtcp_report_block>& reports)
{
uint32_t report_section = RTCP_HEADER_SIZE + SSRC_CSRC_SIZE;
if (has_sender_block)
{
report_section += SENDER_INFO_SIZE;
}
for (int i = 0; i < count; ++i)
{
uint32_t report_position = report_section + (i * REPORT_BLOCK_SIZE);
if (size >= report_position + REPORT_BLOCK_SIZE)
{
uvgrtp::frame::rtcp_report_block report;
report.ssrc = ntohl(*(uint32_t*)&packet[report_position + 0]);
report.fraction = (ntohl(*(uint32_t*)&packet[report_position + 4])) >> 24;
report.lost = (ntohl(*(int32_t*)&packet[report_position + 4])) & 0xfffffd;
report.last_seq = ntohl(*(uint32_t*)&packet[report_position + 8]);
report.jitter = ntohl(*(uint32_t*)&packet[report_position + 12]);
report.lsr = ntohl(*(uint32_t*)&packet[report_position + 16]);
report.dlsr = ntohl(*(uint32_t*)&packet[report_position + 20]);
reports.push_back(report);
} else {
LOG_DEBUG("Received rtcp packet is smaller than the indicated number of reports!");
}
}
}
rtp_error_t uvgrtp::rtcp::send_rtcp_packet_to_participants(uint8_t* frame, size_t frame_size)
{
rtp_error_t ret = RTP_OK;
for (auto& p : participants_)
{
if (p.second->socket != nullptr)
{
if ((ret = p.second->socket->sendto(p.second->address, frame, frame_size, 0)) != RTP_OK)
{
LOG_ERROR("Sending rtcp packet with sendto() failed!");
break;
}
update_rtcp_bandwidth(frame_size);
}
else
{
LOG_ERROR("Tried to send RTCP packet when socket does not exist!");
}
}
delete[] frame;
return ret;
}
rtp_error_t uvgrtp::rtcp::generate_report()
{
rtcp_pkt_sent_count_++;
rtp_error_t ret = RTP_OK;
uint8_t* frame = nullptr;
int ptr = RTCP_HEADER_SIZE + SSRC_CSRC_SIZE;
size_t frame_size = RTCP_HEADER_SIZE + SSRC_CSRC_SIZE;
uint16_t reports = 0;
for (auto& p : participants_)
{
if (p.second->stats.received_rtp_packet)
{
++reports;
}
}
frame_size += REPORT_BLOCK_SIZE*reports;
if (flags_ & RCE_SRTP)
{
frame_size += UVG_SRTCP_INDEX_LENGTH + UVG_AUTH_TAG_LENGTH;
}
// see https://datatracker.ietf.org/doc/html/rfc3550#section-6.4.1
if (our_role_ == SENDER && our_stats.sent_rtp_packet)
{
LOG_DEBUG("Generating RTCP Sender report");
// sender reports have sender information in addition compared to receiver reports
frame_size += SENDER_INFO_SIZE;
construct_rtcp_header(frame_size, frame, reports, uvgrtp::frame::RTCP_FT_SR, true);
// add sender info to packet
if (clock_start_ == 0)
{
clock_start_ = uvgrtp::clock::ntp::now();
}
/* Sender information */
uint64_t ntp_ts = uvgrtp::clock::ntp::now();
uint64_t rtp_ts = rtp_ts_start_ + (uvgrtp::clock::ntp::diff(clock_start_, ntp_ts))
* float(clock_rate_ / 1000);
SET_NEXT_FIELD_32(frame, ptr, htonl(ntp_ts >> 32));
SET_NEXT_FIELD_32(frame, ptr, htonl(ntp_ts & 0xffffffff));
SET_NEXT_FIELD_32(frame, ptr, htonl((u_long)rtp_ts));
SET_NEXT_FIELD_32(frame, ptr, htonl(our_stats.sent_pkts));
SET_NEXT_FIELD_32(frame, ptr, htonl(our_stats.sent_bytes));
our_stats.sent_rtp_packet = false;
} else { // RECEIVER
LOG_DEBUG("Generating RTCP Receiver report");
construct_rtcp_header(frame_size, frame, reports, uvgrtp::frame::RTCP_FT_RR, true);
}
// the report blocks for sender or receiver report. Both have same reports.
// TODO: Only include reports from sources which we
// have received RTP packets since last report.
for (auto& p : participants_)
{
// only add report blocks if we have received data from them
if (p.second->stats.received_rtp_packet)
{
int dropped = p.second->stats.dropped_pkts;
// TODO: This should be the number of packets lost compared to number of packets expected (see fraction lost in RFC 3550)
// see https://datatracker.ietf.org/doc/html/rfc3550#appendix-A.3
uint8_t frac = dropped ? p.second->stats.received_bytes / dropped : 0;
SET_NEXT_FIELD_32(frame, ptr, htonl(p.first)); /* ssrc */
SET_NEXT_FIELD_32(frame, ptr, htonl((frac << 24) | p.second->stats.dropped_pkts));
SET_NEXT_FIELD_32(frame, ptr, htonl(p.second->stats.max_seq));
SET_NEXT_FIELD_32(frame, ptr, htonl(p.second->stats.jitter));
SET_NEXT_FIELD_32(frame, ptr, htonl(p.second->stats.lsr));
/* calculate delay of last SR only if SR has been received at least once */
if (p.second->stats.lsr)
{
uint64_t diff = (u_long)uvgrtp::clock::hrc::diff_now(p.second->stats.sr_ts);
SET_NEXT_FIELD_32(frame, ptr, (uint32_t)htonl((u_long)uvgrtp::clock::ms_to_jiffies(diff)));
}
ptr += p.second->stats.lsr ? 0 : 4;
// we only send reports if there is something to report since last report
p.second->stats.received_rtp_packet = false;
}
}
if (srtcp_ && (ret = srtcp_->handle_rtcp_encryption(flags_, rtcp_pkt_sent_count_, ssrc_, frame, frame_size)) != RTP_OK)
{
LOG_DEBUG("Encryption failed. Not sending packet");
delete[] frame;
return ret;
}
return send_rtcp_packet_to_participants(frame, frame_size);
}
rtp_error_t uvgrtp::rtcp::send_sdes_packet(const std::vector<uvgrtp::frame::rtcp_sdes_item>& items)
{
if (items.empty())
{
LOG_ERROR("Cannot send an empty SDES packet!");
return RTP_INVALID_VALUE;
}
if (num_receivers_ > MAX_SUPPORTED_PARTICIPANTS)
{
LOG_ERROR("Source count is larger than packet supports!");
// TODO: Multiple SDES packets should be sent in this case
return RTP_GENERIC_ERROR;
}
uint8_t* frame = nullptr;
rtp_error_t ret = RTP_OK;
// this already adds our ssrc
construct_rtcp_header(frame_size, frame, num_receivers_, uvgrtp::frame::RTCP_FT_SDES, true);
int ptr = RTCP_HEADER_SIZE + SSRC_CSRC_SIZE;
construct_sdes_packet(frame, ptr, items);
if (srtcp_ && (ret = srtcp_->handle_rtcp_encryption(flags_, rtcp_pkt_sent_count_,
ssrc_, frame, frame_size)) != RTP_OK)
{
delete[] frame;
return ret;
}
return send_rtcp_packet_to_participants(frame, frame_size);
}
rtp_error_t uvgrtp::rtcp::send_bye_packet(std::vector<uint32_t> ssrcs)
{
if (ssrcs.empty())
{
LOG_WARN("Source Count in RTCP BYE packet is 0");
}
size_t frame_size = RTCP_HEADER_SIZE + ssrcs.size() * SSRC_CSRC_SIZE;
uint8_t* frame = nullptr;
int ptr = RTCP_HEADER_SIZE;
rtp_error_t ret = RTP_OK;
if ((ret = construct_rtcp_header(frame_size, frame, (ssrcs.size() & 0x1f),
uvgrtp::frame::RTCP_FT_BYE, false)) != RTP_OK)
{
return ret;
}
for (auto& ssrc : ssrcs)
{
SET_NEXT_FIELD_32(frame, ptr, htonl(ssrc));
}
return send_rtcp_packet_to_participants(frame, frame_size);
}
rtp_error_t uvgrtp::rtcp::send_app_packet(const char* name, uint8_t subtype,
size_t payload_len, const uint8_t* payload)
{
rtp_error_t ret = RTP_OK;
uint8_t* frame = nullptr;
size_t frame_size = get_app_packet_size(payload_len);
if ((ret = construct_rtcp_header(frame_size, frame, (subtype & 0x1f),
uvgrtp::frame::RTCP_FT_APP, true)) != RTP_OK)
{
return ret;
}
int ptr = RTCP_HEADER_SIZE + SSRC_CSRC_SIZE;
construct_app_packet(frame, ptr, name, payload, payload_len);
if (srtcp_ && (ret = srtcp_->handle_rtcp_encryption(flags_, rtcp_pkt_sent_count_, ssrc_, frame, frame_size)) != RTP_OK)
{
delete[] frame;
return ret;
}
return send_rtcp_packet_to_participants(frame, frame_size);
}
void uvgrtp::rtcp::set_session_bandwidth(int kbps)
{
interval_ms_ = 1000*360 / kbps; // the reduced minimum (see section 6.2 in RFC 3550)
if (interval_ms_ > DEFAULT_RTCP_INTERVAL_MS)
{
interval_ms_ = DEFAULT_RTCP_INTERVAL_MS;
}
// TODO: This should follow the algorithm specified in RFC 3550 appendix-A.7
}