uvgrtp-base/src/reception_flow.cc

744 lines
21 KiB
C++
Raw Blame History

#include "reception_flow.hh"
#include "uvgrtp/util.hh"
#include "uvgrtp/frame.hh"
#include "socket.hh"
#include "debug.hh"
#include "random.hh"
#include "global.hh"
#include <chrono>
#ifndef _WIN32
#include <errno.h>
#include <poll.h>
#include <pthread.h>
#else
#define MSG_DONTWAIT 0
#endif
#include <cstring>
constexpr size_t DEFAULT_INITIAL_BUFFER_SIZE = 4194304;
uvgrtp::reception_flow::reception_flow() :
hooks_({}),
handler_mapping_({}),
should_stop_(true),
receiver_(nullptr),
user_hook_arg_(nullptr),
user_hook_(nullptr),
ring_buffer_(),
ring_read_index_(-1), // invalid first index that will increase to a valid one
last_ring_write_index_(-1),
socket_(),
buffer_size_kbytes_(DEFAULT_INITIAL_BUFFER_SIZE),
payload_size_(MAX_IPV4_PAYLOAD),
active_(false)
{
create_ring_buffer();
}
uvgrtp::reception_flow::~reception_flow()
{
hooks_.clear();
destroy_ring_buffer();
clear_frames();
}
void uvgrtp::reception_flow::clear_frames()
{
frames_mtx_.lock();
for (auto& frame : frames_)
{
(void)uvgrtp::frame::dealloc_frame(frame);
}
frames_.clear();
frames_mtx_.unlock();
}
void uvgrtp::reception_flow::create_ring_buffer()
{
destroy_ring_buffer();
size_t elements = buffer_size_kbytes_ / payload_size_;
for (size_t i = 0; i < elements; ++i)
{
uint8_t* data = new uint8_t[payload_size_];
if (data)
{
ring_buffer_.push_back({data, 0});
}
else
{
UVG_LOG_ERROR("Failed to allocate memory for ring buffer");
}
}
}
void uvgrtp::reception_flow::destroy_ring_buffer()
{
for (size_t i = 0; i < ring_buffer_.size(); ++i)
{
if (ring_buffer_.at(i).data)
{
delete[] ring_buffer_.at(i).data;
}
}
ring_buffer_.clear();
}
void uvgrtp::reception_flow::set_buffer_size(const ssize_t& value)
{
buffer_size_kbytes_ = value;
create_ring_buffer();
}
ssize_t uvgrtp::reception_flow::get_buffer_size() const
{
return buffer_size_kbytes_;
}
void uvgrtp::reception_flow::set_payload_size(const size_t& value)
{
payload_size_ = value;
create_ring_buffer();
}
rtp_error_t uvgrtp::reception_flow::start(std::shared_ptr<uvgrtp::socket> socket, int rce_flags)
{
if (active_) {
return RTP_OK;
}
should_stop_ = false;
UVG_LOG_DEBUG("Creating receiving threads and setting priorities");
processor_ = std::unique_ptr<std::thread>(new std::thread(&uvgrtp::reception_flow::process_packet, this, rce_flags));
receiver_ = std::unique_ptr<std::thread>(new std::thread(&uvgrtp::reception_flow::receiver, this, socket));
// set receiver thread priority to maximum
#ifndef WIN32
struct sched_param params;
params.sched_priority = sched_get_priority_max(SCHED_FIFO);
pthread_setschedparam(receiver_->native_handle(), SCHED_FIFO, &params);
params.sched_priority = sched_get_priority_max(SCHED_FIFO) - 1;
pthread_setschedparam(processor_->native_handle(), SCHED_FIFO, &params);
#else
SetThreadPriority(receiver_->native_handle(), REALTIME_PRIORITY_CLASS);
SetThreadPriority(processor_->native_handle(), ABOVE_NORMAL_PRIORITY_CLASS);
#endif
active_ = true;
return RTP_ERROR::RTP_OK;
}
rtp_error_t uvgrtp::reception_flow::stop()
{
if (!active_) {
return RTP_OK;
}
should_stop_ = true;
process_cond_.notify_all();
if (receiver_ != nullptr && receiver_->joinable())
{
receiver_->join();
}
if (processor_ != nullptr && processor_->joinable())
{
processor_->join();
}
clear_frames();
active_ = false;
return RTP_OK;
}
rtp_error_t uvgrtp::reception_flow::install_receive_hook(
void *arg,
void (*hook)(void *, uvgrtp::frame::rtp_frame *),
uint32_t ssrc
)
{
if (!hook)
return RTP_INVALID_VALUE;
// ssrc 0 is used when streams are not multiplexed into a single socket
if (hooks_.find(ssrc) == hooks_.end()) {
receive_pkt_hook new_hook = { arg, hook };
hooks_[ssrc] = new_hook;
}
else {
receive_pkt_hook new_hook = { arg, hook };
hooks_.erase(ssrc);
hooks_.insert({ssrc, new_hook});
}
return RTP_OK;
}
uvgrtp::frame::rtp_frame *uvgrtp::reception_flow::pull_frame()
{
while (frames_.empty() && !should_stop_)
{
std::this_thread::sleep_for(std::chrono::milliseconds(5));
}
if (should_stop_)
return nullptr;
frames_mtx_.lock();
auto frame = frames_.front();
frames_.erase(frames_.begin());
frames_mtx_.unlock();
return frame;
}
uvgrtp::frame::rtp_frame *uvgrtp::reception_flow::pull_frame(ssize_t timeout_ms)
{
auto start_time = std::chrono::high_resolution_clock::now();
while (frames_.empty() &&
!should_stop_ &&
timeout_ms > std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start_time).count())
{
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
if (should_stop_ || frames_.empty())
return nullptr;
frames_mtx_.lock();
auto frame = frames_.front();
frames_.pop_front();
frames_mtx_.unlock();
return frame;
}
uvgrtp::frame::rtp_frame* uvgrtp::reception_flow::pull_frame(std::shared_ptr<std::atomic<std::uint32_t>> remote_ssrc)
{
while (frames_.empty() && !should_stop_)
{
std::this_thread::sleep_for(std::chrono::milliseconds(5));
}
if (should_stop_)
return nullptr;
// Check if the source ssrc in the frame matches the remote ssrc that we want to pull frames from
bool found_frame = false;
frames_mtx_.lock();
auto frame = frames_.front();
if (frame->header.ssrc == remote_ssrc.get()->load()) {
frames_.erase(frames_.begin());
found_frame = true;
}
frames_mtx_.unlock();
if (found_frame) {
return frame;
}
return nullptr;
}
uvgrtp::frame::rtp_frame* uvgrtp::reception_flow::pull_frame(ssize_t timeout_ms, std::shared_ptr<std::atomic<std::uint32_t>> remote_ssrc)
{
auto start_time = std::chrono::high_resolution_clock::now();
while (frames_.empty() &&
!should_stop_ &&
timeout_ms > std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::high_resolution_clock::now() - start_time).count())
{
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
if (should_stop_ || frames_.empty())
return nullptr;
// Check if the source ssrc in the frame matches the remote ssrc that we want to pull frames from
bool found_frame = false;
frames_mtx_.lock();
auto frame = frames_.front();
if (frame->header.ssrc == remote_ssrc.get()->load()) {
frames_.pop_front();
found_frame = true;
}
frames_mtx_.unlock();
if (found_frame) {
return frame;
}
return nullptr;
}
uint32_t uvgrtp::reception_flow::install_handler(uvgrtp::packet_handler handler)
{
uint32_t key;
if (!handler)
return 0;
do {
key = uvgrtp::random::generate_32();
} while (!key || (packet_handlers_.find(key) != packet_handlers_.end()));
packet_handlers_[key].primary = handler;
return key;
}
rtp_error_t uvgrtp::reception_flow::install_aux_handler(
uint32_t key,
void *arg,
uvgrtp::packet_handler_aux handler,
uvgrtp::frame_getter getter
)
{
if (!handler)
return RTP_INVALID_VALUE;
if (packet_handlers_.find(key) == packet_handlers_.end())
return RTP_INVALID_VALUE;
auxiliary_handler aux;
aux.arg = arg;
aux.getter = getter;
aux.handler = handler;
packet_handlers_[key].auxiliary.push_back(aux);
return RTP_OK;
}
rtp_error_t uvgrtp::reception_flow::install_aux_handler_cpp(uint32_t key,
std::function<rtp_error_t(int, uvgrtp::frame::rtp_frame**)> handler,
std::function<rtp_error_t(uvgrtp::frame::rtp_frame**)> getter)
{
if (!handler)
return RTP_INVALID_VALUE;
if (packet_handlers_.find(key) == packet_handlers_.end())
return RTP_INVALID_VALUE;
auxiliary_handler_cpp ahc = {handler, getter};
packet_handlers_[key].auxiliary_cpp.push_back(ahc);
return RTP_OK;
}
void uvgrtp::reception_flow::return_frame(uvgrtp::frame::rtp_frame *frame)
{
uint32_t ssrc = frame->header.ssrc;
// korvaa t<>m<EFBFBD> booleanilla, single socket tms
if (hooks_.find(ssrc) != hooks_.end()) {
receive_pkt_hook pkt_hook = hooks_[ssrc];
recv_hook hook = pkt_hook.hook;
void* arg = pkt_hook.arg;
hook(arg, frame);
}
else if (hooks_.find(0) != hooks_.end()) {
receive_pkt_hook pkt_hook = hooks_[0];
recv_hook hook = pkt_hook.hook;
void* arg = pkt_hook.arg;
hook(arg, frame);
}
else {
frames_mtx_.lock();
frames_.push_back(frame);
frames_mtx_.unlock();
}
/*
if (recv_hook_) {
recv_hook_(recv_hook_arg_, frame);
} else {
frames_mtx_.lock();
frames_.push_back(frame);
frames_mtx_.unlock();
}*/
}
rtp_error_t uvgrtp::reception_flow::install_user_hook(void* arg, void (*hook)(void*, uint8_t* payload))
{
if (!hook)
return RTP_INVALID_VALUE;
user_hook_ = hook;
user_hook_arg_ = arg;
return RTP_OK;
}
void uvgrtp::reception_flow::return_user_pkt(uint8_t* pkt)
{
UVG_LOG_DEBUG("Received user packet");
if (user_hook_) {
user_hook_(user_hook_arg_, pkt);
}
else {
UVG_LOG_DEBUG("No user hook installed");
}
}
void uvgrtp::reception_flow::call_aux_handlers(uint32_t key, int rce_flags, uvgrtp::frame::rtp_frame **frame, uint8_t* ptr)
{
rtp_error_t ret;
for (auto& aux : packet_handlers_[key].auxiliary) {
auto fr = *frame;
uint32_t pkt_ssrc = fr->header.ssrc;
uint32_t current_ssrc = handler_mapping_[key].get()->load();
bool found = false;
if (current_ssrc == pkt_ssrc) {
found = true;
}
else if (current_ssrc == 0) {
found = true;
}
if (!found) {
// No SSRC match found, skip this handler
continue;
}
switch ((ret = (*aux.handler)(aux.arg, rce_flags, frame))) {
/* packet was handled successfully */
case RTP_OK:
break;
case RTP_MULTIPLE_PKTS_READY:
{
while ((*aux.getter)(aux.arg, frame) == RTP_PKT_READY)
return_frame(*frame);
}
break;
case RTP_PKT_READY:
return_frame(*frame);
break;
/* packet was not handled or only partially handled by the handler
* proceed to the next handler */
case RTP_PKT_NOT_HANDLED:
case RTP_PKT_MODIFIED:
continue;
case RTP_GENERIC_ERROR:
// too many prints with this in case of minor errors
//UVG_LOG_DEBUG("Error in auxiliary handling of received packet!");
break;
default:
UVG_LOG_ERROR("Unknown error code from packet handler: %d", ret);
break;
}
}
for (auto& aux : packet_handlers_[key].auxiliary_cpp) {
switch ((ret = aux.handler(rce_flags, frame))) {
case RTP_OK: /* packet was handled successfully */
{
break;
}
case RTP_MULTIPLE_PKTS_READY:
{
while (aux.getter(frame) == RTP_PKT_READY)
return_frame(*frame);
break;
}
case RTP_PKT_READY:
{
return_frame(*frame);
break;
}
/* packet was not handled or only partially handled by the handler
* proceed to the next handler */
case RTP_PKT_NOT_HANDLED:
{
continue;
}
case RTP_PKT_MODIFIED:
{
continue;
}
case RTP_GENERIC_ERROR:
{
// too many prints with this in case of minor errors
//UVG_LOG_DEBUG("Error in auxiliary handling of received packet (cpp)!");
break;
}
default:
{
UVG_LOG_ERROR("Unknown error code from packet handler: %d", ret);
break;
}
}
}
}
void uvgrtp::reception_flow::receiver(std::shared_ptr<uvgrtp::socket> socket)
{
int read_packets = 0;
while (!should_stop_) {
// First we wait using poll until there is data in the socket
#ifdef _WIN32
LPWSAPOLLFD pfds = new pollfd();
#else
pollfd* pfds = new pollfd();
#endif
size_t read_fds = socket->get_raw_socket();
pfds->fd = read_fds;
pfds->events = POLLIN;
// exits after this time if no data has been received to check whether we should exit
int timeout_ms = 100;
#ifdef _WIN32
if (WSAPoll(pfds, 1, timeout_ms) < 0) {
#else
if (poll(pfds, 1, timeout_ms) < 0) {
#endif
UVG_LOG_ERROR("poll(2) failed");
if (pfds)
{
delete pfds;
pfds = nullptr;
}
break;
}
if (pfds->revents & POLLIN) {
// we write as many packets as socket has in the buffer
while (!should_stop_)
{
ssize_t next_write_index = next_buffer_location(last_ring_write_index_);
//increase_buffer_size(next_write_index);
rtp_error_t ret = RTP_OK;
// get the potential packet
ret = socket->recvfrom(ring_buffer_[next_write_index].data, payload_size_,
MSG_DONTWAIT, &ring_buffer_[next_write_index].read);
if (ret == RTP_INTERRUPTED)
{
break;
}
else if (ring_buffer_[next_write_index].read == 0)
{
UVG_LOG_WARN("Failed to read anything from socket");
break;
}
else if (ret != RTP_OK) {
UVG_LOG_ERROR("recvfrom(2) failed! Reception flow cannot continue %d!", ret);
should_stop_ = true;
break;
}
++read_packets;
// finally we update the ring buffer so processing (reading) knows that there is a new frame
last_ring_write_index_ = next_write_index;
}
// start processing the packets by waking the processing thread
process_cond_.notify_one();
}
if (pfds)
{
delete pfds;
pfds = nullptr;
}
}
UVG_LOG_DEBUG("Total read packets from buffer: %li", read_packets);
}
void uvgrtp::reception_flow::process_packet(int rce_flags)
{
std::unique_lock<std::mutex> lk(wait_mtx_);
int processed_packets = 0;
while (!should_stop_)
{
// go to sleep waiting for something to process
process_cond_.wait(lk);
if (should_stop_)
{
break;
}
// process all available reads in one go
while (ring_read_index_ != last_ring_write_index_)
{
// first update the read location
ring_read_index_ = next_buffer_location(ring_read_index_);
if (ring_buffer_[ring_read_index_].read > 0)
{
rtp_error_t ret = RTP_OK;
// process the ring buffer location through all the handlers
for (auto& handler : packet_handlers_) {
uvgrtp::frame::rtp_frame* frame = nullptr;
frame = (uvgrtp::frame::rtp_frame*)ring_buffer_[ring_read_index_].data;
uint8_t* ptr = (uint8_t*)ring_buffer_[ring_read_index_].data;
uint32_t nhssrc = ntohl(*(uint32_t*)&ptr[8]);
uint32_t hnssrc = (uint32_t)ptr[8];
uint32_t current_ssrc = handler_mapping_[handler.first].get()->load();
bool found = false;
// this looks so weird because the ssrc field in RTP packets is in different byte order
// than in SRTP packets, so we have to check many different possibilities
// TODO: fix the byte order...
if (current_ssrc == hnssrc || current_ssrc == nhssrc|| current_ssrc == frame->header.ssrc) {
found = true;
}
else if (current_ssrc == 0) {
found = true;
}
if (!found) {
// No SSRC match found, skip this handler
continue;
}
frame = nullptr;
// Here we don't lock ring mutex because the chaging is only done above.
// NOTE: If there is a need for multiple processing threads, the read should be guarded
switch ((ret = (*handler.second.primary)(ring_buffer_[ring_read_index_].read,
ring_buffer_[ring_read_index_].data, rce_flags, &frame))) {
case RTP_OK:
{
// packet was handled successfully
break;
}
case RTP_PKT_NOT_HANDLED:
{
// packet was not handled by this primary handlers, proceed to the next one
continue;
/* packet was handled by the primary handler
* and should be dispatched to the auxiliary handler(s) */
}
case RTP_PKT_MODIFIED:
{
call_aux_handlers(handler.first, rce_flags, &frame, ptr);
break;
}
case RTP_GENERIC_ERROR:
{
UVG_LOG_DEBUG("Error in handling of received packet!");
break;
}
default:
{
UVG_LOG_ERROR("Unknown error code from packet handler: %d", ret);
break;
}
}
}
// to make sure we don't process this packet again
ring_buffer_[ring_read_index_].read = 0;
++processed_packets;
}
else
{
#ifndef NDEBUG
#ifndef __RTP_SILENT__
ssize_t write = last_ring_write_index_;
ssize_t read = ring_read_index_;
UVG_LOG_DEBUG("Found invalid frame in read buffer: %li. R: %lli, W: %lli",
ring_buffer_[ring_read_index_].read, read, write);
#endif
#endif
}
}
}
UVG_LOG_DEBUG("Total processed packets: %li", processed_packets);
}
ssize_t uvgrtp::reception_flow::next_buffer_location(ssize_t current_location)
{
/*
#ifndef NDEBUG
if (current_location + 1 == ring_buffer_.size())
{
ssize_t read = ring_read_index_;
ssize_t write = last_ring_write_index_;
UVG_LOG_DEBUG("Ring buffer (%lli) rotation. R: %lli, W: %lli", ring_buffer_.size(), read, write);
}
#endif // !NDEBUG
*/
// rotates to beginning after buffer end
return (current_location + 1) % ring_buffer_.size();
}
void uvgrtp::reception_flow::increase_buffer_size(ssize_t next_write_index)
{
// create new buffer spaces if the process/read hasn't freed any spots on the ring buffer
if (next_write_index == ring_read_index_)
{
// increase the buffer size by 25%
ssize_t increase = ring_buffer_.size() / 4;
if (increase == 0) // just so there is some increase
++increase;
UVG_LOG_DEBUG("Reception buffer ran out, increasing the buffer size: %lli -> %lli",
ring_buffer_.size(), ring_buffer_.size() + increase);
for (unsigned int i = 0; i < increase; ++i)
{
ring_buffer_.insert(ring_buffer_.begin() + next_write_index, { new uint8_t[payload_size_] , -1 });
}
// this works, because we have just added increase amount of spaces
ring_read_index_ += increase;
}
}
bool uvgrtp::reception_flow::map_handler_key(uint32_t key, std::shared_ptr<std::atomic<std::uint32_t>> remote_ssrc)
{
if (handler_mapping_.find(key) == handler_mapping_.end()) {
handler_mapping_[key] = remote_ssrc;
return true;
}
return false;
}
int uvgrtp::reception_flow::clear_stream_from_flow(std::shared_ptr<std::atomic<std::uint32_t>> remote_ssrc, uint32_t handler_key)
{
// Clear all the data structures
if (hooks_.find(remote_ssrc.get()->load()) != hooks_.end()) {
hooks_.erase(remote_ssrc.get()->load());
}
if (packet_handlers_.find(handler_key) != packet_handlers_.end()) {
packet_handlers_.erase(handler_key);
}
if (handler_mapping_.find(handler_key) != handler_mapping_.end()) {
handler_mapping_.erase(handler_key);
}
// If all the data structures are empty, return 1 which means that there is no streams left for this reception_flow
// and it can be safely deleted
if (hooks_.empty() && packet_handlers_.empty() && handler_mapping_.empty()) {
return 1;
}
return 0;
}