rv1126-uboot/drivers/crypto/rockchip/crypto_v2.c

772 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2019 Fuzhou Rockchip Electronics Co., Ltd
*/
#include <common.h>
#include <clk.h>
#include <crypto.h>
#include <dm.h>
#include <asm/io.h>
#include <asm/arch/hardware.h>
#include <asm/arch/clock.h>
#include <rockchip/crypto_v2.h>
#include <rockchip/crypto_v2_pka.h>
struct rockchip_crypto_priv {
fdt_addr_t reg;
struct clk clk;
u32 frequency;
char *clocks;
u32 *frequencies;
u32 nclocks;
u32 length;
struct rk_hash_ctx *hw_ctx;
};
#define LLI_ADDR_ALIGIN_SIZE 8
#define DATA_ADDR_ALIGIN_SIZE 8
#define DATA_LEN_ALIGIN_SIZE 64
#define RK_CRYPTO_TIME_OUT 50000 /* max 50ms */
#define RK_WHILE_TIME_OUT(condition, timeout, ret) { \
u32 time_out = timeout; \
ret = 0; \
while (condition) { \
if (time_out-- == 0) { \
debug("[%s] %d: time out!\n", __func__,\
__LINE__); \
ret = -ETIME; \
break; \
} \
udelay(1); \
} \
} while (0)
typedef u32 paddr_t;
#define virt_to_phys(addr) (((unsigned long)addr) & 0xffffffff)
#define phys_to_virt(addr, area) ((unsigned long)addr)
static const u8 null_hash_sha1_value[] = {
0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d,
0x32, 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90,
0xaf, 0xd8, 0x07, 0x09
};
static const u8 null_hash_md5_value[] = {
0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04,
0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e
};
static const u8 null_hash_sha256_value[] = {
0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14,
0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24,
0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c,
0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55
};
static const u8 null_hash_sha512_value[] = {
0xcf, 0x83, 0xe1, 0x35, 0x7e, 0xef, 0xb8, 0xbd,
0xf1, 0x54, 0x28, 0x50, 0xd6, 0x6d, 0x80, 0x07,
0xd6, 0x20, 0xe4, 0x05, 0x0b, 0x57, 0x15, 0xdc,
0x83, 0xf4, 0xa9, 0x21, 0xd3, 0x6c, 0xe9, 0xce,
0x47, 0xd0, 0xd1, 0x3c, 0x5d, 0x85, 0xf2, 0xb0,
0xff, 0x83, 0x18, 0xd2, 0x87, 0x7e, 0xec, 0x2f,
0x63, 0xb9, 0x31, 0xbd, 0x47, 0x41, 0x7a, 0x81,
0xa5, 0x38, 0x32, 0x7a, 0xf9, 0x27, 0xda, 0x3e
};
fdt_addr_t crypto_base;
static void word2byte(u32 word, u8 *ch, u32 endian)
{
/* 0: Big-Endian 1: Little-Endian */
if (endian == BIG_ENDIAN) {
ch[0] = (word >> 24) & 0xff;
ch[1] = (word >> 16) & 0xff;
ch[2] = (word >> 8) & 0xff;
ch[3] = (word >> 0) & 0xff;
} else if (endian == LITTLE_ENDIAN) {
ch[0] = (word >> 0) & 0xff;
ch[1] = (word >> 8) & 0xff;
ch[2] = (word >> 16) & 0xff;
ch[3] = (word >> 24) & 0xff;
} else {
ch[0] = 0;
ch[1] = 0;
ch[2] = 0;
ch[3] = 0;
}
}
static void rk_flush_cache_align(ulong addr, ulong size, ulong alignment)
{
ulong aligned_input, aligned_len;
/* Must flush dcache before crypto DMA fetch data region */
aligned_input = round_down(addr, alignment);
aligned_len = round_up(size + (addr - aligned_input), alignment);
flush_cache(aligned_input, aligned_len);
}
static inline void clear_hash_out_reg(void)
{
int i;
/*clear out register*/
for (i = 0; i < 16; i++)
crypto_write(0, CRYPTO_HASH_DOUT_0 + 4 * i);
}
static int hw_crypto_reset(void)
{
u32 tmp = 0, tmp_mask = 0;
int ret;
tmp = CRYPTO_SW_PKA_RESET | CRYPTO_SW_CC_RESET;
tmp_mask = tmp << CRYPTO_WRITE_MASK_SHIFT;
/* reset pka and crypto modules*/
crypto_write(tmp | tmp_mask, CRYPTO_RST_CTL);
/* wait reset compelete */
RK_WHILE_TIME_OUT(crypto_read(CRYPTO_RST_CTL),
RK_CRYPTO_TIME_OUT, ret);
return ret;
}
static void hw_hash_clean_ctx(struct rk_hash_ctx *ctx)
{
/* clear hash status */
crypto_write(CRYPTO_WRITE_MASK_ALL | 0, CRYPTO_HASH_CTL);
assert(ctx);
assert(ctx->magic == RK_HASH_CTX_MAGIC);
if (ctx->cache)
free(ctx->cache);
memset(ctx, 0x00, sizeof(*ctx));
}
int rk_hash_init(void *hw_ctx, u32 algo, u32 length)
{
struct rk_hash_ctx *tmp_ctx = (struct rk_hash_ctx *)hw_ctx;
u32 reg_ctrl = 0;
int ret;
if (!tmp_ctx)
return -EINVAL;
memset(tmp_ctx, 0x00, sizeof(*tmp_ctx));
reg_ctrl = CRYPTO_SW_CC_RESET;
crypto_write(reg_ctrl | (reg_ctrl << CRYPTO_WRITE_MASK_SHIFT),
CRYPTO_RST_CTL);
/* wait reset compelete */
RK_WHILE_TIME_OUT(crypto_read(CRYPTO_RST_CTL),
RK_CRYPTO_TIME_OUT, ret);
reg_ctrl = 0;
tmp_ctx->algo = algo;
switch (algo) {
case CRYPTO_MD5:
reg_ctrl |= CRYPTO_MODE_MD5;
tmp_ctx->digest_size = 16;
tmp_ctx->null_hash = null_hash_md5_value;
break;
case CRYPTO_SHA1:
reg_ctrl |= CRYPTO_MODE_SHA1;
tmp_ctx->digest_size = 20;
tmp_ctx->null_hash = null_hash_sha1_value;
break;
case CRYPTO_SHA256:
reg_ctrl |= CRYPTO_MODE_SHA256;
tmp_ctx->digest_size = 32;
tmp_ctx->null_hash = null_hash_sha256_value;
break;
case CRYPTO_SHA512:
reg_ctrl |= CRYPTO_MODE_SHA512;
tmp_ctx->digest_size = 64;
tmp_ctx->null_hash = null_hash_sha512_value;
break;
default:
ret = -EINVAL;
goto exit;
}
clear_hash_out_reg();
/* enable hardware padding */
reg_ctrl |= CRYPTO_HW_PAD_ENABLE;
crypto_write(reg_ctrl | CRYPTO_WRITE_MASK_ALL, CRYPTO_HASH_CTL);
/* FIFO input and output data byte swap */
/* such as B0, B1, B2, B3 -> B3, B2, B1, B0 */
reg_ctrl = CRYPTO_DOUT_BYTESWAP | CRYPTO_DOIN_BYTESWAP;
crypto_write(reg_ctrl | CRYPTO_WRITE_MASK_ALL, CRYPTO_FIFO_CTL);
/* enable src_item_done interrupt */
crypto_write(CRYPTO_SRC_ITEM_INT_EN, CRYPTO_DMA_INT_EN);
tmp_ctx->magic = RK_HASH_CTX_MAGIC;
tmp_ctx->left_len = length;
return 0;
exit:
/* clear hash setting if init failed */
crypto_write(CRYPTO_WRITE_MASK_ALL | 0, CRYPTO_HASH_CTL);
return ret;
}
static int rk_hash_direct_calc(struct crypto_lli_desc *lli, const u8 *data,
u32 data_len, u8 *started_flag, u8 is_last)
{
int ret = -EINVAL;
u32 tmp = 0;
assert(IS_ALIGNED((ulong)data, DATA_ADDR_ALIGIN_SIZE));
assert(is_last || IS_ALIGNED(data_len, DATA_LEN_ALIGIN_SIZE));
debug("%s: data = %p, len = %u, s = %x, l = %x\n",
__func__, data, data_len, *started_flag, is_last);
memset(lli, 0x00, sizeof(*lli));
lli->src_addr = (u32)virt_to_phys(data);
lli->src_len = data_len;
lli->dma_ctrl = LLI_DMA_CTRL_SRC_DONE;
if (is_last) {
lli->user_define |= LLI_USER_STRING_LAST;
lli->dma_ctrl |= LLI_DMA_CTRL_LAST;
} else {
lli->next_addr = (u32)virt_to_phys(lli);
lli->dma_ctrl |= LLI_DMA_CTRL_PAUSE;
}
if (!(*started_flag)) {
lli->user_define |=
(LLI_USER_STRING_START | LLI_USER_CPIHER_START);
crypto_write((u32)virt_to_phys(lli), CRYPTO_DMA_LLI_ADDR);
crypto_write((CRYPTO_HASH_ENABLE << CRYPTO_WRITE_MASK_SHIFT) |
CRYPTO_HASH_ENABLE, CRYPTO_HASH_CTL);
tmp = CRYPTO_DMA_START;
*started_flag = 1;
} else {
tmp = CRYPTO_DMA_RESTART;
}
/* flush cache */
rk_flush_cache_align((ulong)lli, sizeof(*lli),
CONFIG_SYS_CACHELINE_SIZE);
rk_flush_cache_align((ulong)data, data_len, CONFIG_SYS_CACHELINE_SIZE);
/* start calculate */
crypto_write(tmp << CRYPTO_WRITE_MASK_SHIFT | tmp,
CRYPTO_DMA_CTL);
/* wait calc ok */
RK_WHILE_TIME_OUT(!crypto_read(CRYPTO_DMA_INT_ST),
RK_CRYPTO_TIME_OUT, ret);
/* clear interrupt status */
tmp = crypto_read(CRYPTO_DMA_INT_ST);
crypto_write(tmp, CRYPTO_DMA_INT_ST);
if (tmp != CRYPTO_SRC_ITEM_DONE_INT_ST &&
tmp != CRYPTO_ZERO_LEN_INT_ST) {
debug("[%s] %d: CRYPTO_DMA_INT_ST = 0x%x\n",
__func__, __LINE__, tmp);
goto exit;
}
exit:
return ret;
}
static int rk_hash_cache_calc(struct rk_hash_ctx *tmp_ctx, const u8 *data,
u32 data_len, u8 is_last)
{
u32 left_len;
int ret = 0;
if (!tmp_ctx->cache) {
tmp_ctx->cache = (u8 *)memalign(DATA_ADDR_ALIGIN_SIZE,
HASH_CACHE_SIZE);
if (!tmp_ctx->cache)
goto error;
tmp_ctx->cache_size = 0;
}
left_len = tmp_ctx->left_len;
while (1) {
u32 tmp_len = 0;
if (tmp_ctx->cache_size + data_len <= HASH_CACHE_SIZE) {
/* copy to cache */
debug("%s, %d: copy to cache %u\n",
__func__, __LINE__, data_len);
memcpy(tmp_ctx->cache + tmp_ctx->cache_size, data,
data_len);
tmp_ctx->cache_size += data_len;
/* if last one calc cache immediately */
if (is_last) {
debug("%s, %d: last one calc cache %u\n",
__func__, __LINE__, tmp_ctx->cache_size);
ret = rk_hash_direct_calc(&tmp_ctx->data_lli,
tmp_ctx->cache,
tmp_ctx->cache_size,
&tmp_ctx->is_started,
is_last);
if (ret)
goto error;
}
left_len -= data_len;
break;
}
/* 1. make cache be full */
/* 2. calc cache */
tmp_len = HASH_CACHE_SIZE - tmp_ctx->cache_size;
debug("%s, %d: make cache be full %u\n",
__func__, __LINE__, tmp_len);
memcpy(tmp_ctx->cache + tmp_ctx->cache_size, data, tmp_len);
ret = rk_hash_direct_calc(&tmp_ctx->data_lli,
tmp_ctx->cache,
HASH_CACHE_SIZE,
&tmp_ctx->is_started,
0);
if (ret)
goto error;
data += tmp_len;
data_len -= tmp_len;
left_len -= tmp_len;
tmp_ctx->cache_size = 0;
}
return ret;
error:
return -EINVAL;
}
int rk_hash_update(void *ctx, const u8 *data, u32 data_len)
{
struct rk_hash_ctx *tmp_ctx = (struct rk_hash_ctx *)ctx;
const u8 *direct_data = NULL, *cache_data = NULL;
u32 direct_data_len = 0, cache_data_len = 0;
int ret = 0;
u8 is_last = 0;
debug("\n");
if (!tmp_ctx || !data)
goto error;
if (tmp_ctx->digest_size == 0 || tmp_ctx->magic != RK_HASH_CTX_MAGIC)
goto error;
if (tmp_ctx->left_len < data_len)
goto error;
is_last = tmp_ctx->left_len == data_len ? 1 : 0;
if (!tmp_ctx->use_cache &&
IS_ALIGNED((ulong)data, DATA_ADDR_ALIGIN_SIZE)) {
direct_data = data;
if (IS_ALIGNED(data_len, DATA_LEN_ALIGIN_SIZE) || is_last) {
/* calc all directly */
debug("%s, %d: calc all directly\n",
__func__, __LINE__);
direct_data_len = data_len;
} else {
/* calc some directly calc some in cache */
debug("%s, %d: calc some directly calc some in cache\n",
__func__, __LINE__);
direct_data_len = round_down((ulong)data_len,
DATA_LEN_ALIGIN_SIZE);
cache_data = direct_data + direct_data_len;
cache_data_len = data_len % DATA_LEN_ALIGIN_SIZE;
tmp_ctx->use_cache = 1;
}
} else {
/* calc all in cache */
debug("%s, %d: calc all in cache\n", __func__, __LINE__);
cache_data = data;
cache_data_len = data_len;
tmp_ctx->use_cache = 1;
}
if (direct_data_len) {
debug("%s, %d: calc direct data %u\n",
__func__, __LINE__, direct_data_len);
ret = rk_hash_direct_calc(&tmp_ctx->data_lli, direct_data,
direct_data_len,
&tmp_ctx->is_started, is_last);
if (ret)
goto error;
tmp_ctx->left_len -= direct_data_len;
}
if (cache_data_len) {
debug("%s, %d: calc cache data %u\n",
__func__, __LINE__, cache_data_len);
ret = rk_hash_cache_calc(tmp_ctx, cache_data,
cache_data_len, is_last);
if (ret)
goto error;
tmp_ctx->left_len -= cache_data_len;
}
return ret;
error:
/* free lli list */
hw_hash_clean_ctx(tmp_ctx);
return -EINVAL;
}
int rk_hash_final(void *ctx, u8 *digest, size_t len)
{
struct rk_hash_ctx *tmp_ctx = (struct rk_hash_ctx *)ctx;
int ret = -EINVAL;
u32 i;
if (!digest)
goto exit;
if (!tmp_ctx ||
tmp_ctx->digest_size == 0 ||
len > tmp_ctx->digest_size ||
tmp_ctx->magic != RK_HASH_CTX_MAGIC) {
goto exit;
}
/* wait hash value ok */
RK_WHILE_TIME_OUT(!crypto_read(CRYPTO_HASH_VALID),
RK_CRYPTO_TIME_OUT, ret);
for (i = 0; i < len / 4; i++)
word2byte(crypto_read(CRYPTO_HASH_DOUT_0 + i * 4),
digest + i * 4, BIG_ENDIAN);
if (len % 4) {
u8 tmp_buf[4];
word2byte(crypto_read(CRYPTO_HASH_DOUT_0 + i * 4),
tmp_buf, BIG_ENDIAN);
memcpy(digest + i * 4, tmp_buf, len % 4);
}
/* clear hash status */
crypto_write(CRYPTO_HASH_IS_VALID, CRYPTO_HASH_VALID);
crypto_write(CRYPTO_WRITE_MASK_ALL | 0, CRYPTO_HASH_CTL);
exit:
/* free lli list */
hw_hash_clean_ctx(tmp_ctx);
return ret;
}
static int rk_trng(u8 *trng, u32 len)
{
u32 i, reg_ctrl = 0;
int ret = -EINVAL;
u32 buf[8];
if (len > CRYPTO_TRNG_MAX)
return -EINVAL;
memset(buf, 0, sizeof(buf));
/* enable osc_ring to get entropy, sample period is set as 50 */
crypto_write(50, CRYPTO_RNG_SAMPLE_CNT);
reg_ctrl |= CRYPTO_RNG_256_bit_len;
reg_ctrl |= CRYPTO_RNG_SLOWER_SOC_RING_1;
reg_ctrl |= CRYPTO_RNG_ENABLE;
reg_ctrl |= CRYPTO_RNG_START;
reg_ctrl |= CRYPTO_WRITE_MASK_ALL;
crypto_write(reg_ctrl | CRYPTO_WRITE_MASK_ALL, CRYPTO_RNG_CTL);
RK_WHILE_TIME_OUT(crypto_read(CRYPTO_RNG_CTL) & CRYPTO_RNG_START,
RK_CRYPTO_TIME_OUT, ret);
if (ret == 0) {
for (i = 0; i < ARRAY_SIZE(buf); i++)
buf[i] = crypto_read(CRYPTO_RNG_DOUT_0 + i * 4);
memcpy(trng, buf, len);
}
/* close TRNG */
crypto_write(0 | CRYPTO_WRITE_MASK_ALL, CRYPTO_RNG_CTL);
return ret;
}
static u32 rockchip_crypto_capability(struct udevice *dev)
{
return CRYPTO_MD5 |
CRYPTO_SHA1 |
CRYPTO_SHA256 |
#if !defined(CONFIG_ROCKCHIP_RK1808)
CRYPTO_SHA512 |
#endif
CRYPTO_RSA512 |
CRYPTO_RSA1024 |
CRYPTO_RSA2048 |
CRYPTO_RSA3072 |
CRYPTO_RSA4096 |
CRYPTO_TRNG;
}
static int rockchip_crypto_sha_init(struct udevice *dev, sha_context *ctx)
{
struct rockchip_crypto_priv *priv = dev_get_priv(dev);
if (!ctx)
return -EINVAL;
memset(priv->hw_ctx, 0x00, sizeof(struct rk_hash_ctx));
return rk_hash_init(priv->hw_ctx, ctx->algo, ctx->length);
}
static int rockchip_crypto_sha_update(struct udevice *dev,
u32 *input, u32 len)
{
struct rockchip_crypto_priv *priv = dev_get_priv(dev);
if (!len)
return -EINVAL;
return rk_hash_update(priv->hw_ctx, (u8 *)input, len);
}
static int rockchip_crypto_sha_final(struct udevice *dev,
sha_context *ctx, u8 *output)
{
struct rockchip_crypto_priv *priv = dev_get_priv(dev);
u32 nbits;
nbits = crypto_algo_nbits(ctx->algo);
return rk_hash_final(priv->hw_ctx, (u8 *)output, BITS2BYTE(nbits));
}
static int rockchip_crypto_rsa_verify(struct udevice *dev, rsa_key *ctx,
u8 *sign, u8 *output)
{
struct mpa_num *mpa_m = NULL, *mpa_e = NULL, *mpa_n = NULL;
struct mpa_num *mpa_c = NULL, *mpa_result = NULL;
u32 n_bits, n_words;
u32 *rsa_result;
int ret;
if (!ctx)
return -EINVAL;
if (ctx->algo != CRYPTO_RSA512 &&
ctx->algo != CRYPTO_RSA1024 &&
ctx->algo != CRYPTO_RSA2048 &&
ctx->algo != CRYPTO_RSA3072 &&
ctx->algo != CRYPTO_RSA4096)
return -EINVAL;
n_bits = crypto_algo_nbits(ctx->algo);
n_words = BITS2WORD(n_bits);
rsa_result = malloc(BITS2BYTE(n_bits));
if (!rsa_result)
return -ENOMEM;
memset(rsa_result, 0x00, BITS2BYTE(n_bits));
ret = rk_mpa_alloc(&mpa_m);
ret |= rk_mpa_alloc(&mpa_e);
ret |= rk_mpa_alloc(&mpa_n);
ret |= rk_mpa_alloc(&mpa_c);
ret |= rk_mpa_alloc(&mpa_result);
if (ret)
goto exit;
mpa_m->d = (void *)sign;
mpa_e->d = (void *)ctx->e;
mpa_n->d = (void *)ctx->n;
mpa_c->d = (void *)ctx->c;
mpa_result->d = (void *)rsa_result;
mpa_m->size = n_words;
mpa_e->size = n_words;
mpa_n->size = n_words;
mpa_c->size = n_words;
mpa_result->size = n_words;
ret = rk_exptmod_np(mpa_m, mpa_e, mpa_n, mpa_c, mpa_result);
if (!ret)
memcpy(output, rsa_result, BITS2BYTE(n_bits));
exit:
free(rsa_result);
rk_mpa_free(&mpa_m);
rk_mpa_free(&mpa_e);
rk_mpa_free(&mpa_n);
rk_mpa_free(&mpa_c);
rk_mpa_free(&mpa_result);
return ret;
}
static int rockchip_crypto_get_trng(struct udevice *dev, u8 *output, u32 len)
{
int ret;
u32 i;
if (!dev || !output || !len)
return -EINVAL;
for (i = 0; i < len / CRYPTO_TRNG_MAX; i++) {
ret = rk_trng(output + i * CRYPTO_TRNG_MAX, CRYPTO_TRNG_MAX);
if (ret)
goto fail;
}
ret = rk_trng(output + i * CRYPTO_TRNG_MAX, len % CRYPTO_TRNG_MAX);
fail:
return ret;
}
static const struct dm_crypto_ops rockchip_crypto_ops = {
.capability = rockchip_crypto_capability,
.sha_init = rockchip_crypto_sha_init,
.sha_update = rockchip_crypto_sha_update,
.sha_final = rockchip_crypto_sha_final,
.rsa_verify = rockchip_crypto_rsa_verify,
.get_trng = rockchip_crypto_get_trng,
};
/*
* Only use "clocks" to parse crypto clock id and use rockchip_get_clk().
* Because we always add crypto node in U-Boot dts, when kernel dtb enabled :
*
* 1. There is cru phandle mismatch between U-Boot and kernel dtb;
* 2. CONFIG_OF_SPL_REMOVE_PROPS removes clock property;
*/
static int rockchip_crypto_ofdata_to_platdata(struct udevice *dev)
{
struct rockchip_crypto_priv *priv = dev_get_priv(dev);
int len, ret = -EINVAL;
if (!dev_read_prop(dev, "clocks", &len)) {
printf("Can't find \"clocks\" property\n");
return -EINVAL;
}
memset(priv, 0x00, sizeof(*priv));
priv->clocks = malloc(len);
if (!priv->clocks)
return -ENOMEM;
priv->nclocks = len / sizeof(u32);
if (dev_read_u32_array(dev, "clocks", (u32 *)priv->clocks,
priv->nclocks)) {
printf("Can't read \"clocks\" property\n");
ret = -EINVAL;
goto exit;
}
if (!dev_read_prop(dev, "clock-frequency", &len)) {
printf("Can't find \"clock-frequency\" property\n");
ret = -EINVAL;
goto exit;
}
priv->frequencies = malloc(len);
if (!priv->frequencies) {
ret = -ENOMEM;
goto exit;
}
priv->nclocks = len / sizeof(u32);
if (dev_read_u32_array(dev, "clock-frequency", priv->frequencies,
priv->nclocks)) {
printf("Can't read \"clock-frequency\" property\n");
ret = -EINVAL;
goto exit;
}
priv->reg = (fdt_addr_t)dev_read_addr_ptr(dev);
crypto_base = priv->reg;
return 0;
exit:
if (priv->clocks)
free(priv->clocks);
if (priv->frequencies)
free(priv->frequencies);
return ret;
}
static int rockchip_crypto_probe(struct udevice *dev)
{
struct rockchip_crypto_priv *priv = dev_get_priv(dev);
int i, ret = 0;
u32* clocks;
priv->hw_ctx = memalign(LLI_ADDR_ALIGIN_SIZE,
sizeof(struct rk_hash_ctx));
if (!priv->hw_ctx)
return -ENOMEM;
ret = rockchip_get_clk(&priv->clk.dev);
if (ret) {
printf("Failed to get clk device, ret=%d\n", ret);
return ret;
}
clocks = (u32 *)priv->clocks;
for (i = 0; i < priv->nclocks; i++) {
priv->clk.id = clocks[i * 2 + 1];
ret = clk_set_rate(&priv->clk, priv->frequencies[i]);
if (ret < 0) {
printf("%s: Failed to set clk(%ld): ret=%d\n",
__func__, priv->clk.id, ret);
return ret;
}
}
hw_crypto_reset();
return 0;
}
static const struct udevice_id rockchip_crypto_ids[] = {
{ .compatible = "rockchip,px30-crypto" },
{ .compatible = "rockchip,rk1808-crypto" },
{ .compatible = "rockchip,rk3308-crypto" },
{ .compatible = "rockchip,rv1126-crypto" },
{ }
};
U_BOOT_DRIVER(rockchip_crypto_v2) = {
.name = "rockchip_crypto_v2",
.id = UCLASS_CRYPTO,
.of_match = rockchip_crypto_ids,
.ops = &rockchip_crypto_ops,
.probe = rockchip_crypto_probe,
.ofdata_to_platdata = rockchip_crypto_ofdata_to_platdata,
.priv_auto_alloc_size = sizeof(struct rockchip_crypto_priv),
};