618 lines
19 KiB
C++
618 lines
19 KiB
C++
/****************************************************************************
|
|
**
|
|
** Copyright (C) 2014 Digia Plc and/or its subsidiary(-ies).
|
|
** Contact: http://www.qt-project.org/legal
|
|
**
|
|
** This file is part of the QtQml module of the Qt Toolkit.
|
|
**
|
|
** $QT_BEGIN_LICENSE:LGPL21$
|
|
** Commercial License Usage
|
|
** Licensees holding valid commercial Qt licenses may use this file in
|
|
** accordance with the commercial license agreement provided with the
|
|
** Software or, alternatively, in accordance with the terms contained in
|
|
** a written agreement between you and Digia. For licensing terms and
|
|
** conditions see http://qt.digia.com/licensing. For further information
|
|
** use the contact form at http://qt.digia.com/contact-us.
|
|
**
|
|
** GNU Lesser General Public License Usage
|
|
** Alternatively, this file may be used under the terms of the GNU Lesser
|
|
** General Public License version 2.1 or version 3 as published by the Free
|
|
** Software Foundation and appearing in the file LICENSE.LGPLv21 and
|
|
** LICENSE.LGPLv3 included in the packaging of this file. Please review the
|
|
** following information to ensure the GNU Lesser General Public License
|
|
** requirements will be met: https://www.gnu.org/licenses/lgpl.html and
|
|
** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
|
|
**
|
|
** In addition, as a special exception, Digia gives you certain additional
|
|
** rights. These rights are described in the Digia Qt LGPL Exception
|
|
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
|
|
**
|
|
** $QT_END_LICENSE$
|
|
**
|
|
****************************************************************************/
|
|
#ifndef QV4VALUE_P_H
|
|
#define QV4VALUE_P_H
|
|
|
|
#include <limits.h>
|
|
|
|
#include <QtCore/QString>
|
|
#include "qv4global_p.h"
|
|
|
|
QT_BEGIN_NAMESPACE
|
|
|
|
namespace QV4 {
|
|
|
|
typedef uint Bool;
|
|
|
|
namespace Heap {
|
|
|
|
struct Q_QML_EXPORT Base {
|
|
Base(InternalClass *internal)
|
|
: internalClass(internal)
|
|
, markBit(0)
|
|
, inUse(1)
|
|
, extensible(1)
|
|
{
|
|
// ####
|
|
// Q_ASSERT(internal && internal->vtable);
|
|
}
|
|
InternalClass *internalClass;
|
|
struct {
|
|
uchar markBit : 1;
|
|
uchar inUse : 1;
|
|
uchar extensible : 1; // used by Object
|
|
uchar _unused : 1;
|
|
uchar needsActivation : 1; // used by FunctionObject
|
|
uchar strictMode : 1; // used by FunctionObject
|
|
uchar bindingKeyFlag : 1;
|
|
uchar hasAccessorProperty : 1;
|
|
uchar _type;
|
|
mutable uchar subtype;
|
|
uchar _flags;
|
|
|
|
};
|
|
|
|
void setVTable(const ManagedVTable *vt);
|
|
inline ReturnedValue asReturnedValue() const;
|
|
inline void mark(QV4::ExecutionEngine *engine);
|
|
|
|
void *operator new(size_t, Managed *m) { return m; }
|
|
void *operator new(size_t, Heap::Base *m) { return m; }
|
|
void operator delete(void *, Heap::Base *) {}
|
|
};
|
|
|
|
}
|
|
|
|
template <typename T>
|
|
struct Returned : private Heap::Base
|
|
{
|
|
static Returned<T> *create(T *t) { Q_ASSERT((void *)&t->data == (void *)t); return static_cast<Returned<T> *>(static_cast<Heap::Base*>(t ? &t->data : 0)); }
|
|
static Returned<T> *create(typename T::Data *t) { return static_cast<Returned<T> *>(static_cast<Heap::Base*>(t)); }
|
|
T *getPointer() { return reinterpret_cast<T *>(this); }
|
|
template<typename X>
|
|
static T *getPointer(Returned<X> *x) { return x->getPointer(); }
|
|
template<typename X>
|
|
Returned<X> *as() { return Returned<X>::create(Returned<X>::getPointer(this)); }
|
|
|
|
inline ReturnedValue asReturnedValue();
|
|
};
|
|
|
|
struct Q_QML_PRIVATE_EXPORT Value
|
|
{
|
|
/*
|
|
We use two different ways of encoding JS values. One for 32bit and one for 64bit systems.
|
|
|
|
In both cases, we 8 bytes for a value and different variant of NaN boxing. A Double NaN (actually -qNaN)
|
|
is indicated by a number that has the top 13 bits set. THe other values are usually set to 0 by the
|
|
processor, and are thus free for us to store other data. We keep pointers in there for managed objects,
|
|
and encode the other types using the free space given to use by the unused bits for NaN values. This also
|
|
works for pointers on 64 bit systems, as they all currently only have 48 bits of addressable memory.
|
|
|
|
On 32bit, we store doubles as doubles. All other values, have the high 32bits set to a value that
|
|
will make the number a NaN. The Masks below are used for encoding the other types.
|
|
|
|
On 64 bit, we xor Doubles with (0xffff8000 << 32). Thas has the effect that no doubles will get encoded
|
|
with the 13 highest bits all 0. We are now using special values for bits 14-17 to encode our values. These
|
|
can be used, as the highest valid pointer on a 64 bit system is 2^48-1.
|
|
|
|
If they are all 0, we have a pointer to a Managed object. If bit 14 is set we have an integer.
|
|
This makes testing for pointers and numbers very fast (we have a number if any of the highest 14 bits is set).
|
|
|
|
Bit 15-17 is then used to encode other immediates.
|
|
*/
|
|
|
|
|
|
union {
|
|
quint64 val;
|
|
#if QT_POINTER_SIZE == 8
|
|
Heap::Base *m;
|
|
#else
|
|
double dbl;
|
|
#endif
|
|
struct {
|
|
#if Q_BYTE_ORDER != Q_LITTLE_ENDIAN
|
|
uint tag;
|
|
#endif
|
|
union {
|
|
uint uint_32;
|
|
int int_32;
|
|
#if QT_POINTER_SIZE == 4
|
|
Heap::Base *m;
|
|
#endif
|
|
};
|
|
#if Q_BYTE_ORDER == Q_LITTLE_ENDIAN
|
|
uint tag;
|
|
#endif
|
|
};
|
|
};
|
|
|
|
#if QT_POINTER_SIZE == 4
|
|
enum Masks {
|
|
SilentNaNBit = 0x00040000,
|
|
NaN_Mask = 0x7ff80000,
|
|
NotDouble_Mask = 0x7ffa0000,
|
|
Type_Mask = 0xffffc000,
|
|
Immediate_Mask = NotDouble_Mask | 0x00004000 | SilentNaNBit,
|
|
IsNullOrUndefined_Mask = Immediate_Mask | 0x08000,
|
|
Tag_Shift = 32
|
|
};
|
|
enum ValueType {
|
|
Undefined_Type = Immediate_Mask | 0x00000,
|
|
Null_Type = Immediate_Mask | 0x10000,
|
|
Boolean_Type = Immediate_Mask | 0x08000,
|
|
Integer_Type = Immediate_Mask | 0x18000,
|
|
Managed_Type = NotDouble_Mask | 0x00000 | SilentNaNBit,
|
|
Empty_Type = NotDouble_Mask | 0x18000 | SilentNaNBit
|
|
};
|
|
|
|
enum ImmediateFlags {
|
|
ConvertibleToInt = Immediate_Mask | 0x1
|
|
};
|
|
|
|
enum ValueTypeInternal {
|
|
_Null_Type = Null_Type | ConvertibleToInt,
|
|
_Boolean_Type = Boolean_Type | ConvertibleToInt,
|
|
_Integer_Type = Integer_Type | ConvertibleToInt,
|
|
|
|
};
|
|
#else
|
|
static const quint64 NaNEncodeMask = 0xffff800000000000ll;
|
|
static const quint64 IsInt32Mask = 0x0002000000000000ll;
|
|
static const quint64 IsDoubleMask = 0xfffc000000000000ll;
|
|
static const quint64 IsNumberMask = IsInt32Mask|IsDoubleMask;
|
|
static const quint64 IsNullOrUndefinedMask = 0x0000800000000000ll;
|
|
static const quint64 IsNullOrBooleanMask = 0x0001000000000000ll;
|
|
static const quint64 IsConvertibleToIntMask = IsInt32Mask|IsNullOrBooleanMask;
|
|
|
|
enum Masks {
|
|
NaN_Mask = 0x7ff80000,
|
|
Type_Mask = 0xffff8000,
|
|
IsDouble_Mask = 0xfffc0000,
|
|
Immediate_Mask = 0x00018000,
|
|
IsNullOrUndefined_Mask = 0x00008000,
|
|
IsNullOrBoolean_Mask = 0x00010000,
|
|
Tag_Shift = 32
|
|
};
|
|
enum ValueType {
|
|
Undefined_Type = IsNullOrUndefined_Mask,
|
|
Null_Type = IsNullOrUndefined_Mask|IsNullOrBoolean_Mask,
|
|
Boolean_Type = IsNullOrBoolean_Mask,
|
|
Integer_Type = 0x20000|IsNullOrBoolean_Mask,
|
|
Managed_Type = 0,
|
|
Empty_Type = Undefined_Type | 0x4000
|
|
};
|
|
enum {
|
|
IsDouble_Shift = 64-14,
|
|
IsNumber_Shift = 64-15,
|
|
IsConvertibleToInt_Shift = 64-16,
|
|
IsManaged_Shift = 64-17
|
|
};
|
|
|
|
|
|
enum ValueTypeInternal {
|
|
_Null_Type = Null_Type,
|
|
_Boolean_Type = Boolean_Type,
|
|
_Integer_Type = Integer_Type
|
|
};
|
|
#endif
|
|
|
|
inline unsigned type() const {
|
|
return tag & Type_Mask;
|
|
}
|
|
|
|
// used internally in property
|
|
inline bool isEmpty() const { return tag == Empty_Type; }
|
|
|
|
inline bool isUndefined() const { return tag == Undefined_Type; }
|
|
inline bool isNull() const { return tag == _Null_Type; }
|
|
inline bool isBoolean() const { return tag == _Boolean_Type; }
|
|
#if QT_POINTER_SIZE == 8
|
|
inline bool isInteger() const { return (val >> IsNumber_Shift) == 1; }
|
|
inline bool isDouble() const { return (val >> IsDouble_Shift); }
|
|
inline bool isNumber() const { return (val >> IsNumber_Shift); }
|
|
inline bool isManaged() const { return !(val >> IsManaged_Shift); }
|
|
inline bool isNullOrUndefined() const { return ((val >> IsManaged_Shift) & ~2) == 1; }
|
|
inline bool integerCompatible() const { return ((val >> IsConvertibleToInt_Shift) & ~2) == 1; }
|
|
static inline bool integerCompatible(Value a, Value b) {
|
|
return a.integerCompatible() && b.integerCompatible();
|
|
}
|
|
static inline bool bothDouble(Value a, Value b) {
|
|
return a.isDouble() && b.isDouble();
|
|
}
|
|
double doubleValue() const {
|
|
Q_ASSERT(isDouble());
|
|
union {
|
|
quint64 i;
|
|
double d;
|
|
} v;
|
|
v.i = val ^ NaNEncodeMask;
|
|
return v.d;
|
|
}
|
|
void setDouble(double d) {
|
|
union {
|
|
quint64 i;
|
|
double d;
|
|
} v;
|
|
v.d = d;
|
|
val = v.i ^ NaNEncodeMask;
|
|
Q_ASSERT(isDouble());
|
|
}
|
|
bool isNaN() const { return (tag & 0x7fff8000) == 0x00078000; }
|
|
#else
|
|
inline bool isInteger() const { return tag == _Integer_Type; }
|
|
inline bool isDouble() const { return (tag & NotDouble_Mask) != NotDouble_Mask; }
|
|
inline bool isNumber() const { return tag == _Integer_Type || (tag & NotDouble_Mask) != NotDouble_Mask; }
|
|
inline bool isManaged() const { return tag == Managed_Type; }
|
|
inline bool isNullOrUndefined() const { return (tag & IsNullOrUndefined_Mask) == Undefined_Type; }
|
|
inline bool integerCompatible() const { return (tag & ConvertibleToInt) == ConvertibleToInt; }
|
|
static inline bool integerCompatible(Value a, Value b) {
|
|
return ((a.tag & b.tag) & ConvertibleToInt) == ConvertibleToInt;
|
|
}
|
|
static inline bool bothDouble(Value a, Value b) {
|
|
return ((a.tag | b.tag) & NotDouble_Mask) != NotDouble_Mask;
|
|
}
|
|
double doubleValue() const { Q_ASSERT(isDouble()); return dbl; }
|
|
void setDouble(double d) { dbl = d; Q_ASSERT(isDouble()); }
|
|
bool isNaN() const { return (tag & QV4::Value::NotDouble_Mask) == QV4::Value::NaN_Mask; }
|
|
#endif
|
|
inline bool isString() const;
|
|
inline bool isObject() const;
|
|
inline bool isInt32() {
|
|
if (tag == _Integer_Type)
|
|
return true;
|
|
if (isDouble()) {
|
|
double d = doubleValue();
|
|
int i = (int)d;
|
|
if (i == d) {
|
|
int_32 = i;
|
|
tag = _Integer_Type;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
double asDouble() const {
|
|
if (tag == _Integer_Type)
|
|
return int_32;
|
|
return doubleValue();
|
|
}
|
|
|
|
bool booleanValue() const {
|
|
return int_32;
|
|
}
|
|
int integerValue() const {
|
|
return int_32;
|
|
}
|
|
|
|
String *stringValue() const {
|
|
return m ? reinterpret_cast<String*>(m) : 0;
|
|
}
|
|
Object *objectValue() const {
|
|
return m ? reinterpret_cast<Object*>(m) : 0;
|
|
}
|
|
Managed *managed() const {
|
|
return m ? reinterpret_cast<Managed*>(m) : 0;
|
|
}
|
|
Heap::Base *heapObject() const {
|
|
return m;
|
|
}
|
|
|
|
quint64 rawValue() const {
|
|
return val;
|
|
}
|
|
|
|
static inline Value fromHeapObject(Heap::Base *m)
|
|
{
|
|
Value v;
|
|
v.m = m;
|
|
#if QT_POINTER_SIZE == 4
|
|
v.tag = Managed_Type;
|
|
#endif
|
|
return v;
|
|
}
|
|
|
|
static inline Value fromManaged(Managed *m);
|
|
|
|
int toUInt16() const;
|
|
inline int toInt32() const;
|
|
inline unsigned int toUInt32() const;
|
|
|
|
inline bool toBoolean() const;
|
|
double toInteger() const;
|
|
inline double toNumber() const;
|
|
double toNumberImpl() const;
|
|
QString toQStringNoThrow() const;
|
|
QString toQString() const;
|
|
Heap::String *toString(ExecutionEngine *e) const;
|
|
Heap::String *toString(ExecutionContext *ctx) const;
|
|
Heap::Object *toObject(ExecutionEngine *e) const;
|
|
Heap::Object *toObject(ExecutionContext *ctx) const;
|
|
|
|
inline bool isPrimitive() const;
|
|
inline bool tryIntegerConversion() {
|
|
bool b = integerCompatible();
|
|
if (b)
|
|
tag = _Integer_Type;
|
|
return b;
|
|
}
|
|
|
|
inline String *asString() const;
|
|
inline Managed *asManaged() const;
|
|
inline Object *asObject() const;
|
|
inline FunctionObject *asFunctionObject() const;
|
|
inline NumberObject *asNumberObject() const;
|
|
inline StringObject *asStringObject() const;
|
|
inline DateObject *asDateObject() const;
|
|
inline ArrayObject *asArrayObject() const;
|
|
inline ErrorObject *asErrorObject() const;
|
|
|
|
template<typename T> inline T *as() const;
|
|
template<typename T> inline T *cast() {
|
|
return static_cast<T *>(managed());
|
|
}
|
|
template<typename T> inline const T *cast() const {
|
|
return static_cast<const T *>(managed());
|
|
}
|
|
|
|
inline uint asArrayIndex() const;
|
|
inline uint asArrayLength(bool *ok) const;
|
|
|
|
inline ExecutionEngine *engine() const;
|
|
|
|
ReturnedValue asReturnedValue() const { return val; }
|
|
static Value fromReturnedValue(ReturnedValue val) { Value v; v.val = val; return v; }
|
|
|
|
// Section 9.12
|
|
bool sameValue(Value other) const;
|
|
|
|
inline void mark(ExecutionEngine *e) const;
|
|
|
|
Value &operator =(const ScopedValue &v);
|
|
Value &operator=(ReturnedValue v) { val = v; return *this; }
|
|
template<typename T>
|
|
Value &operator=(Returned<T> *t);
|
|
template<typename T>
|
|
Value &operator=(T *t) {
|
|
val = Value::fromManaged(t).val;
|
|
return *this;
|
|
}
|
|
Value &operator=(Heap::Base *o) {
|
|
m = o;
|
|
return *this;
|
|
}
|
|
|
|
template<typename T>
|
|
Value &operator=(const Scoped<T> &t);
|
|
Value &operator=(const ValueRef v);
|
|
Value &operator=(const Value &v) {
|
|
val = v.val;
|
|
return *this;
|
|
}
|
|
template<typename T>
|
|
inline Returned<T> *as();
|
|
};
|
|
|
|
inline Managed *Value::asManaged() const
|
|
{
|
|
if (isManaged())
|
|
return managed();
|
|
return 0;
|
|
}
|
|
|
|
struct Q_QML_PRIVATE_EXPORT Primitive : public Value
|
|
{
|
|
inline static Primitive emptyValue();
|
|
static inline Primitive fromBoolean(bool b);
|
|
static inline Primitive fromInt32(int i);
|
|
inline static Primitive undefinedValue();
|
|
static inline Primitive nullValue();
|
|
static inline Primitive fromDouble(double d);
|
|
static inline Primitive fromUInt32(uint i);
|
|
|
|
static double toInteger(double fromNumber);
|
|
static int toInt32(double value);
|
|
static unsigned int toUInt32(double value);
|
|
|
|
inline operator ValueRef();
|
|
Value asValue() const { return *this; }
|
|
};
|
|
|
|
inline Primitive Primitive::undefinedValue()
|
|
{
|
|
Primitive v;
|
|
#if QT_POINTER_SIZE == 8
|
|
v.val = quint64(Undefined_Type) << Tag_Shift;
|
|
#else
|
|
v.tag = Undefined_Type;
|
|
v.int_32 = 0;
|
|
#endif
|
|
return v;
|
|
}
|
|
|
|
inline Primitive Primitive::emptyValue()
|
|
{
|
|
Primitive v;
|
|
v.tag = Value::Empty_Type;
|
|
v.uint_32 = 0;
|
|
return v;
|
|
}
|
|
|
|
template <typename T>
|
|
struct TypedValue : public Value
|
|
{
|
|
template<typename X>
|
|
TypedValue &operator =(X *x) {
|
|
m = x;
|
|
#if QT_POINTER_SIZE == 4
|
|
tag = Managed_Type;
|
|
#endif
|
|
return *this;
|
|
}
|
|
TypedValue &operator =(T *t);
|
|
TypedValue &operator =(const Scoped<T> &v);
|
|
// TypedValue &operator =(const ManagedRef<T> &v);
|
|
TypedValue &operator =(Returned<T> *t);
|
|
|
|
TypedValue &operator =(const TypedValue<T> &t);
|
|
|
|
bool operator!() const { return !managed(); }
|
|
|
|
operator T *() { return static_cast<T *>(managed()); }
|
|
T *operator->() { return static_cast<T *>(managed()); }
|
|
const T *operator->() const { return static_cast<T *>(managed()); }
|
|
T *getPointer() const { return static_cast<T *>(managed()); }
|
|
Returned<T> *ret() const;
|
|
|
|
void mark(ExecutionEngine *e) { if (managed()) managed()->mark(e); }
|
|
};
|
|
typedef TypedValue<String> StringValue;
|
|
|
|
|
|
struct Encode {
|
|
static ReturnedValue undefined() {
|
|
return quint64(Value::Undefined_Type) << Value::Tag_Shift;
|
|
}
|
|
static ReturnedValue null() {
|
|
return quint64(Value::_Null_Type) << Value::Tag_Shift;
|
|
}
|
|
|
|
Encode(bool b) {
|
|
val = (quint64(Value::_Boolean_Type) << Value::Tag_Shift) | (uint)b;
|
|
}
|
|
Encode(double d) {
|
|
Value v;
|
|
v.setDouble(d);
|
|
val = v.val;
|
|
}
|
|
Encode(int i) {
|
|
val = (quint64(Value::_Integer_Type) << Value::Tag_Shift) | (uint)i;
|
|
}
|
|
Encode(uint i) {
|
|
if (i <= INT_MAX) {
|
|
val = (quint64(Value::_Integer_Type) << Value::Tag_Shift) | i;
|
|
} else {
|
|
Value v;
|
|
v.setDouble(i);
|
|
val = v.val;
|
|
}
|
|
}
|
|
Encode(ReturnedValue v) {
|
|
val = v;
|
|
}
|
|
|
|
template<typename T>
|
|
Encode(Returned<T> *t) {
|
|
val = t->getPointer()->asReturnedValue();
|
|
}
|
|
|
|
Encode(Heap::Base *o) {
|
|
Q_ASSERT(o);
|
|
val = Value::fromHeapObject(o).asReturnedValue();
|
|
}
|
|
|
|
operator ReturnedValue() const {
|
|
return val;
|
|
}
|
|
quint64 val;
|
|
private:
|
|
Encode(void *);
|
|
};
|
|
|
|
struct ValueRef {
|
|
ValueRef(const ScopedValue &v);
|
|
template <typename T>
|
|
ValueRef(const Scoped<T> &v);
|
|
ValueRef(const PersistentValue &v);
|
|
ValueRef(PersistentValuePrivate *p);
|
|
ValueRef(Value &v) { ptr = &v; }
|
|
// Important: Do NOT add a copy constructor to this class
|
|
// adding a copy constructor actually changes the calling convention, ie.
|
|
// is not even binary compatible. Adding it would break assumptions made
|
|
// in the jit'ed code.
|
|
ValueRef &operator=(const ScopedValue &o);
|
|
ValueRef &operator=(const Value &v)
|
|
{ *ptr = v; return *this; }
|
|
ValueRef &operator=(const ReturnedValue &v) {
|
|
ptr->val = v;
|
|
return *this;
|
|
}
|
|
template <typename T>
|
|
ValueRef &operator=(Returned<T> *v) {
|
|
ptr->val = v->asReturnedValue();
|
|
return *this;
|
|
}
|
|
|
|
operator const Value *() const {
|
|
return ptr;
|
|
}
|
|
const Value *operator->() const {
|
|
return ptr;
|
|
}
|
|
|
|
operator Value *() {
|
|
return ptr;
|
|
}
|
|
Value *operator->() {
|
|
return ptr;
|
|
}
|
|
|
|
static ValueRef fromRawValue(Value *v) {
|
|
return ValueRef(v);
|
|
}
|
|
static const ValueRef fromRawValue(const Value *v) {
|
|
return ValueRef(const_cast<Value *>(v));
|
|
}
|
|
|
|
ReturnedValue asReturnedValue() const { return ptr->val; }
|
|
|
|
// ### get rid of this one!
|
|
ValueRef(Value *v) { ptr = v; }
|
|
private:
|
|
Value *ptr;
|
|
};
|
|
|
|
inline
|
|
ReturnedValue Heap::Base::asReturnedValue() const
|
|
{
|
|
return Value::fromHeapObject(const_cast<Heap::Base *>(this)).asReturnedValue();
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
T *value_cast(const Value &v)
|
|
{
|
|
return v.as<T>();
|
|
}
|
|
|
|
template<typename T>
|
|
ReturnedValue value_convert(ExecutionEngine *e, const Value &v);
|
|
|
|
template <typename T>
|
|
ReturnedValue Returned<T>::asReturnedValue() { return Value::fromHeapObject(this).asReturnedValue(); }
|
|
|
|
}
|
|
|
|
QT_END_NAMESPACE
|
|
|
|
#endif // QV4VALUE_DEF_P_H
|