qtdeclarative/src/qml/memory/qv4mm.cpp

1661 lines
57 KiB
C++

// Copyright (C) 2021 The Qt Company Ltd.
// SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only
#include "PageAllocation.h"
#include "PageReservation.h"
#include <private/qnumeric_p.h>
#include <private/qv4alloca_p.h>
#include <private/qv4engine_p.h>
#include <private/qv4identifiertable_p.h>
#include <private/qv4mapobject_p.h>
#include <private/qv4mm_p.h>
#include <private/qv4object_p.h>
#include <private/qv4profiling_p.h>
#include <private/qv4qobjectwrapper_p.h>
#include <private/qv4setobject_p.h>
#include <private/qv4stackframe_p.h>
#include <QtQml/qqmlengine.h>
#include <QtCore/qalgorithms.h>
#include <QtCore/qelapsedtimer.h>
#include <QtCore/qloggingcategory.h>
#include <QtCore/qmap.h>
#include <QtCore/qscopedvaluerollback.h>
#include <algorithm>
#include <chrono>
#include <cstdlib>
//#define MM_STATS
#if !defined(MM_STATS) && !defined(QT_NO_DEBUG)
#define MM_STATS
#endif
#if MM_DEBUG
#define DEBUG qDebug() << "MM:"
#else
#define DEBUG if (1) ; else qDebug() << "MM:"
#endif
#ifdef V4_USE_VALGRIND
#include <valgrind/valgrind.h>
#include <valgrind/memcheck.h>
#endif
#ifdef V4_USE_HEAPTRACK
#include <heaptrack_api.h>
#endif
#if OS(QNX)
#include <sys/storage.h> // __tls()
#endif
#if USE(PTHREADS) && HAVE(PTHREAD_NP_H)
#include <pthread_np.h>
#endif
Q_STATIC_LOGGING_CATEGORY(lcGcStats, "qt.qml.gc.statistics")
Q_STATIC_LOGGING_CATEGORY(lcGcAllocatorStats, "qt.qml.gc.allocatorStats")
Q_STATIC_LOGGING_CATEGORY(lcGcStateTransitions, "qt.qml.gc.stateTransitions")
Q_STATIC_LOGGING_CATEGORY(lcGcForcedRuns, "qt.qml.gc.forcedRuns")
Q_STATIC_LOGGING_CATEGORY(lcGcStepExecution, "qt.qml.gc.stepExecution")
using namespace WTF;
QT_BEGIN_NAMESPACE
namespace QV4 {
enum {
MinSlotsGCLimit = QV4::Chunk::AvailableSlots*16,
GCOverallocation = 200 /* Max overallocation by the GC in % */
};
struct MemorySegment {
enum {
#ifdef Q_OS_RTEMS
NumChunks = sizeof(quint64),
#else
NumChunks = 8*sizeof(quint64),
#endif
SegmentSize = NumChunks*Chunk::ChunkSize,
};
MemorySegment(size_t size)
{
size += Chunk::ChunkSize; // make sure we can get enough 64k alignment memory
if (size < SegmentSize)
size = SegmentSize;
pageReservation = PageReservation::reserve(size, OSAllocator::JSGCHeapPages);
base = reinterpret_cast<Chunk *>((reinterpret_cast<quintptr>(pageReservation.base()) + Chunk::ChunkSize - 1) & ~(Chunk::ChunkSize - 1));
nChunks = NumChunks;
availableBytes = size - (reinterpret_cast<quintptr>(base) - reinterpret_cast<quintptr>(pageReservation.base()));
if (availableBytes < SegmentSize)
--nChunks;
}
MemorySegment(MemorySegment &&other) {
qSwap(pageReservation, other.pageReservation);
qSwap(base, other.base);
qSwap(allocatedMap, other.allocatedMap);
qSwap(availableBytes, other.availableBytes);
qSwap(nChunks, other.nChunks);
}
~MemorySegment() {
if (base)
pageReservation.deallocate();
}
void setBit(size_t index) {
Q_ASSERT(index < nChunks);
quint64 bit = static_cast<quint64>(1) << index;
allocatedMap |= bit;
}
void clearBit(size_t index) {
Q_ASSERT(index < nChunks);
quint64 bit = static_cast<quint64>(1) << index;
allocatedMap &= ~bit;
}
bool testBit(size_t index) const {
Q_ASSERT(index < nChunks);
quint64 bit = static_cast<quint64>(1) << index;
return (allocatedMap & bit);
}
Chunk *allocate(size_t size);
void free(Chunk *chunk, size_t size) {
DEBUG << "freeing chunk" << chunk;
size_t index = static_cast<size_t>(chunk - base);
size_t end = qMin(static_cast<size_t>(NumChunks), index + (size - 1)/Chunk::ChunkSize + 1);
while (index < end) {
Q_ASSERT(testBit(index));
clearBit(index);
++index;
}
size_t pageSize = WTF::pageSize();
size = (size + pageSize - 1) & ~(pageSize - 1);
#if !defined(Q_OS_LINUX) && !defined(Q_OS_WIN)
// Linux and Windows zero out pages that have been decommitted and get committed again.
// unfortunately that's not true on other OSes (e.g. BSD based ones), so zero out the
// memory before decommit, so that we can be sure that all chunks we allocate will be
// zero initialized.
memset(chunk, 0, size);
#endif
pageReservation.decommit(chunk, size);
}
bool contains(Chunk *c) const {
return c >= base && c < base + nChunks;
}
PageReservation pageReservation;
Chunk *base = nullptr;
quint64 allocatedMap = 0;
size_t availableBytes = 0;
uint nChunks = 0;
};
Chunk *MemorySegment::allocate(size_t size)
{
if (!allocatedMap && size >= SegmentSize) {
// chunk allocated for one huge allocation
Q_ASSERT(availableBytes >= size);
pageReservation.commit(base, size);
allocatedMap = ~static_cast<quint64>(0);
return base;
}
size_t requiredChunks = (size + sizeof(Chunk) - 1)/sizeof(Chunk);
uint sequence = 0;
Chunk *candidate = nullptr;
for (uint i = 0; i < nChunks; ++i) {
if (!testBit(i)) {
if (!candidate)
candidate = base + i;
++sequence;
} else {
candidate = nullptr;
sequence = 0;
}
if (sequence == requiredChunks) {
pageReservation.commit(candidate, size);
for (uint i = 0; i < requiredChunks; ++i)
setBit(candidate - base + i);
DEBUG << "allocated chunk " << candidate << Qt::hex << size;
return candidate;
}
}
return nullptr;
}
struct ChunkAllocator {
ChunkAllocator() {}
size_t requiredChunkSize(size_t size) {
size += Chunk::HeaderSize; // space required for the Chunk header
size_t pageSize = WTF::pageSize();
size = (size + pageSize - 1) & ~(pageSize - 1); // align to page sizes
if (size < Chunk::ChunkSize)
size = Chunk::ChunkSize;
return size;
}
Chunk *allocate(size_t size = 0);
void free(Chunk *chunk, size_t size = 0);
std::vector<MemorySegment> memorySegments;
};
Chunk *ChunkAllocator::allocate(size_t size)
{
size = requiredChunkSize(size);
for (auto &m : memorySegments) {
if (~m.allocatedMap) {
Chunk *c = m.allocate(size);
if (c)
return c;
}
}
// allocate a new segment
memorySegments.push_back(MemorySegment(size));
Chunk *c = memorySegments.back().allocate(size);
Q_ASSERT(c);
return c;
}
void ChunkAllocator::free(Chunk *chunk, size_t size)
{
size = requiredChunkSize(size);
for (auto &m : memorySegments) {
if (m.contains(chunk)) {
m.free(chunk, size);
return;
}
}
Q_ASSERT(false);
}
#ifdef DUMP_SWEEP
QString binary(quintptr n) {
QString s = QString::number(n, 2);
while (s.length() < 64)
s.prepend(QChar::fromLatin1('0'));
return s;
}
#define SDUMP qDebug
#else
QString binary(quintptr) { return QString(); }
#define SDUMP if (1) ; else qDebug
#endif
// Stores a classname -> freed count mapping.
typedef QHash<const char*, int> MMStatsHash;
Q_GLOBAL_STATIC(MMStatsHash, freedObjectStatsGlobal)
// This indirection avoids sticking QHash code in each of the call sites, which
// shaves off some instructions in the case that it's unused.
static void increaseFreedCountForClass(const char *className)
{
(*freedObjectStatsGlobal())[className]++;
}
//bool Chunk::sweep(ClassDestroyStatsCallback classCountPtr)
bool Chunk::sweep(ExecutionEngine *engine)
{
bool hasUsedSlots = false;
SDUMP() << "sweeping chunk" << this;
HeapItem *o = realBase();
bool lastSlotFree = false;
for (uint i = 0; i < Chunk::EntriesInBitmap; ++i) {
quintptr toFree = objectBitmap[i] ^ blackBitmap[i];
Q_ASSERT((toFree & objectBitmap[i]) == toFree); // check all black objects are marked as being used
quintptr e = extendsBitmap[i];
SDUMP() << " index=" << i;
SDUMP() << " toFree =" << binary(toFree);
SDUMP() << " black =" << binary(blackBitmap[i]);
SDUMP() << " object =" << binary(objectBitmap[i]);
SDUMP() << " extends =" << binary(e);
if (lastSlotFree)
e &= (e + 1); // clear all lowest extent bits
while (toFree) {
uint index = qCountTrailingZeroBits(toFree);
quintptr bit = (static_cast<quintptr>(1) << index);
toFree ^= bit; // mask out freed slot
// remove all extends slots that have been freed
// this is a bit of bit trickery.
quintptr mask = (bit << 1) - 1; // create a mask of 1's to the right of and up to the current bit
quintptr objmask = e | mask; // or'ing mask with e gives all ones until the end of the current object
quintptr result = objmask + 1;
Q_ASSERT(qCountTrailingZeroBits(result) - index != 0); // ensure we freed something
result |= mask; // ensure we don't clear stuff to the right of the current object
e &= result;
HeapItem *itemToFree = o + index;
Heap::Base *b = *itemToFree;
const VTable *v = b->internalClass->vtable;
// if (Q_UNLIKELY(classCountPtr))
// classCountPtr(v->className);
if (v->destroy) {
v->destroy(b);
b->_checkIsDestroyed();
}
#ifdef V4_USE_HEAPTRACK
heaptrack_report_free(itemToFree);
#endif
}
Q_V4_PROFILE_DEALLOC(engine, qPopulationCount((objectBitmap[i] | extendsBitmap[i])
- (blackBitmap[i] | e)) * Chunk::SlotSize,
Profiling::SmallItem);
objectBitmap[i] = blackBitmap[i];
hasUsedSlots |= (blackBitmap[i] != 0);
extendsBitmap[i] = e;
lastSlotFree = !((objectBitmap[i]|extendsBitmap[i]) >> (sizeof(quintptr)*8 - 1));
SDUMP() << " new extends =" << binary(e);
SDUMP() << " lastSlotFree" << lastSlotFree;
Q_ASSERT((objectBitmap[i] & extendsBitmap[i]) == 0);
o += Chunk::Bits;
}
return hasUsedSlots;
}
void Chunk::freeAll(ExecutionEngine *engine)
{
HeapItem *o = realBase();
for (uint i = 0; i < Chunk::EntriesInBitmap; ++i) {
quintptr toFree = objectBitmap[i];
quintptr e = extendsBitmap[i];
while (toFree) {
uint index = qCountTrailingZeroBits(toFree);
quintptr bit = (static_cast<quintptr>(1) << index);
toFree ^= bit; // mask out freed slot
// remove all extends slots that have been freed
// this is a bit of bit trickery.
quintptr mask = (bit << 1) - 1; // create a mask of 1's to the right of and up to the current bit
quintptr objmask = e | mask; // or'ing mask with e gives all ones until the end of the current object
quintptr result = objmask + 1;
Q_ASSERT(qCountTrailingZeroBits(result) - index != 0); // ensure we freed something
result |= mask; // ensure we don't clear stuff to the right of the current object
e &= result;
HeapItem *itemToFree = o + index;
Heap::Base *b = *itemToFree;
if (b->internalClass->vtable->destroy) {
b->internalClass->vtable->destroy(b);
b->_checkIsDestroyed();
}
#ifdef V4_USE_HEAPTRACK
heaptrack_report_free(itemToFree);
#endif
}
Q_V4_PROFILE_DEALLOC(engine, (qPopulationCount(objectBitmap[i]|extendsBitmap[i])
- qPopulationCount(e)) * Chunk::SlotSize, Profiling::SmallItem);
objectBitmap[i] = 0;
extendsBitmap[i] = e;
o += Chunk::Bits;
}
}
void Chunk::resetBlackBits()
{
memset(blackBitmap, 0, sizeof(blackBitmap));
}
void Chunk::sortIntoBins(HeapItem **bins, uint nBins)
{
HeapItem *base = realBase();
#if QT_POINTER_SIZE == 8
const int start = 0;
#else
const int start = 1;
#endif
uint freeSlots = 0;
uint allocatedSlots = 0;
for (int i = start; i < EntriesInBitmap; ++i) {
quintptr usedSlots = (objectBitmap[i]|extendsBitmap[i]);
#if QT_POINTER_SIZE == 8
if (!i)
usedSlots |= (static_cast<quintptr>(1) << (HeaderSize/SlotSize)) - 1;
#endif
allocatedSlots += qPopulationCount(usedSlots);
while (1) {
uint index = qCountTrailingZeroBits(usedSlots + 1);
if (index == Bits)
break;
uint freeStart = i*Bits + index;
usedSlots &= ~((static_cast<quintptr>(1) << index) - 1);
while (!usedSlots) {
if (++i < EntriesInBitmap) {
usedSlots = (objectBitmap[i]|extendsBitmap[i]);
} else {
Q_ASSERT(i == EntriesInBitmap);
// Overflows to 0 when counting trailing zeroes above in next iteration.
// Then, all the bits are zeroes and we break.
usedSlots = std::numeric_limits<quintptr>::max();
break;
}
allocatedSlots += qPopulationCount(usedSlots);
}
HeapItem *freeItem = base + freeStart;
index = qCountTrailingZeroBits(usedSlots);
usedSlots |= (quintptr(1) << index) - 1;
uint freeEnd = i*Bits + index;
uint nSlots = freeEnd - freeStart;
freeSlots += nSlots;
Q_ASSERT(freeEnd > freeStart && freeEnd <= NumSlots);
freeItem->freeData.availableSlots = nSlots;
uint bin = qMin(nBins - 1, nSlots);
freeItem->freeData.next = bins[bin];
bins[bin] = freeItem;
}
}
Q_ASSERT(freeSlots + allocatedSlots == (EntriesInBitmap - start) * 8 * sizeof(quintptr));
}
HeapItem *BlockAllocator::allocate(size_t size, bool forceAllocation) {
Q_ASSERT((size % Chunk::SlotSize) == 0);
size_t slotsRequired = size >> Chunk::SlotSizeShift;
if (allocationStats)
++allocationStats[binForSlots(slotsRequired)];
HeapItem **last;
HeapItem *m;
if (slotsRequired < NumBins - 1) {
m = freeBins[slotsRequired];
if (m) {
freeBins[slotsRequired] = m->freeData.next;
goto done;
}
}
if (nFree >= slotsRequired) {
// use bump allocation
Q_ASSERT(nextFree);
m = nextFree;
nextFree += slotsRequired;
nFree -= slotsRequired;
goto done;
}
// search last bin for a large enough item
last = &freeBins[NumBins - 1];
while ((m = *last)) {
if (m->freeData.availableSlots >= slotsRequired) {
*last = m->freeData.next; // take it out of the list
size_t remainingSlots = m->freeData.availableSlots - slotsRequired;
if (remainingSlots == 0)
goto done;
HeapItem *remainder = m + slotsRequired;
if (remainingSlots > nFree) {
if (nFree) {
size_t bin = binForSlots(nFree);
nextFree->freeData.next = freeBins[bin];
nextFree->freeData.availableSlots = nFree;
freeBins[bin] = nextFree;
}
nextFree = remainder;
nFree = remainingSlots;
} else {
remainder->freeData.availableSlots = remainingSlots;
size_t binForRemainder = binForSlots(remainingSlots);
remainder->freeData.next = freeBins[binForRemainder];
freeBins[binForRemainder] = remainder;
}
goto done;
}
last = &m->freeData.next;
}
if (slotsRequired < NumBins - 1) {
// check if we can split up another slot
for (size_t i = slotsRequired + 1; i < NumBins - 1; ++i) {
m = freeBins[i];
if (m) {
freeBins[i] = m->freeData.next; // take it out of the list
size_t remainingSlots = i - slotsRequired;
Q_ASSERT(remainingSlots < NumBins - 1);
HeapItem *remainder = m + slotsRequired;
remainder->freeData.availableSlots = remainingSlots;
remainder->freeData.next = freeBins[remainingSlots];
freeBins[remainingSlots] = remainder;
goto done;
}
}
}
if (!m) {
if (!forceAllocation)
return nullptr;
if (nFree) {
// Save any remaining slots of the current chunk
// for later, smaller allocations.
size_t bin = binForSlots(nFree);
nextFree->freeData.next = freeBins[bin];
nextFree->freeData.availableSlots = nFree;
freeBins[bin] = nextFree;
}
Chunk *newChunk = chunkAllocator->allocate();
Q_V4_PROFILE_ALLOC(engine, Chunk::DataSize, Profiling::HeapPage);
chunks.push_back(newChunk);
nextFree = newChunk->first();
nFree = Chunk::AvailableSlots;
m = nextFree;
nextFree += slotsRequired;
nFree -= slotsRequired;
}
done:
m->setAllocatedSlots(slotsRequired);
Q_V4_PROFILE_ALLOC(engine, slotsRequired * Chunk::SlotSize, Profiling::SmallItem);
#ifdef V4_USE_HEAPTRACK
heaptrack_report_alloc(m, slotsRequired * Chunk::SlotSize);
#endif
return m;
}
void BlockAllocator::sweep()
{
nextFree = nullptr;
nFree = 0;
memset(freeBins, 0, sizeof(freeBins));
usedSlotsAfterLastSweep = 0;
auto firstEmptyChunk = std::partition(chunks.begin(), chunks.end(), [this](Chunk *c) {
return c->sweep(engine);
});
std::for_each(chunks.begin(), firstEmptyChunk, [this](Chunk *c) {
c->sortIntoBins(freeBins, NumBins);
usedSlotsAfterLastSweep += c->nUsedSlots();
});
// only free the chunks at the end to avoid that the sweep() calls indirectly
// access freed memory
std::for_each(firstEmptyChunk, chunks.end(), [this](Chunk *c) {
Q_V4_PROFILE_DEALLOC(engine, Chunk::DataSize, Profiling::HeapPage);
chunkAllocator->free(c);
});
chunks.erase(firstEmptyChunk, chunks.end());
}
void BlockAllocator::freeAll()
{
for (auto c : chunks)
c->freeAll(engine);
for (auto c : chunks) {
Q_V4_PROFILE_DEALLOC(engine, Chunk::DataSize, Profiling::HeapPage);
chunkAllocator->free(c);
}
}
void BlockAllocator::resetBlackBits()
{
for (auto c : chunks)
c->resetBlackBits();
}
HeapItem *HugeItemAllocator::allocate(size_t size) {
MemorySegment *m = nullptr;
Chunk *c = nullptr;
if (size >= MemorySegment::SegmentSize/2) {
// too large to handle through the ChunkAllocator, let's get our own memory segement
size += Chunk::HeaderSize; // space required for the Chunk header
size_t pageSize = WTF::pageSize();
size = (size + pageSize - 1) & ~(pageSize - 1); // align to page sizes
m = new MemorySegment(size);
c = m->allocate(size);
} else {
c = chunkAllocator->allocate(size);
}
Q_ASSERT(c);
chunks.push_back(HugeChunk{m, c, size});
Chunk::setBit(c->objectBitmap, c->first() - c->realBase());
Q_V4_PROFILE_ALLOC(engine, size, Profiling::LargeItem);
#ifdef V4_USE_HEAPTRACK
heaptrack_report_alloc(c, size);
#endif
return c->first();
}
static void freeHugeChunk(ChunkAllocator *chunkAllocator, const HugeItemAllocator::HugeChunk &c, ClassDestroyStatsCallback classCountPtr)
{
HeapItem *itemToFree = c.chunk->first();
Heap::Base *b = *itemToFree;
const VTable *v = b->internalClass->vtable;
if (Q_UNLIKELY(classCountPtr))
classCountPtr(v->className);
if (v->destroy) {
v->destroy(b);
b->_checkIsDestroyed();
}
if (c.segment) {
// own memory segment
c.segment->free(c.chunk, c.size);
delete c.segment;
} else {
chunkAllocator->free(c.chunk, c.size);
}
#ifdef V4_USE_HEAPTRACK
heaptrack_report_free(c.chunk);
#endif
}
void HugeItemAllocator::sweep(ClassDestroyStatsCallback classCountPtr)
{
auto isBlack = [this, classCountPtr] (const HugeChunk &c) {
bool b = c.chunk->first()->isBlack();
Chunk::clearBit(c.chunk->blackBitmap, c.chunk->first() - c.chunk->realBase());
if (!b) {
Q_V4_PROFILE_DEALLOC(engine, c.size, Profiling::LargeItem);
freeHugeChunk(chunkAllocator, c, classCountPtr);
}
return !b;
};
auto newEnd = std::remove_if(chunks.begin(), chunks.end(), isBlack);
chunks.erase(newEnd, chunks.end());
}
void HugeItemAllocator::resetBlackBits()
{
for (auto c : chunks)
Chunk::clearBit(c.chunk->blackBitmap, c.chunk->first() - c.chunk->realBase());
}
void HugeItemAllocator::freeAll()
{
for (auto &c : chunks) {
Q_V4_PROFILE_DEALLOC(engine, c.size, Profiling::LargeItem);
freeHugeChunk(chunkAllocator, c, nullptr);
}
}
namespace {
using ExtraData = GCStateInfo::ExtraData;
GCState markStart(GCStateMachine *that, ExtraData &)
{
//Initialize the mark stack
that->mm->m_markStack = std::make_unique<MarkStack>(that->mm->engine);
that->mm->engine->isGCOngoing = true;
return GCState::MarkGlobalObject;
}
GCState markGlobalObject(GCStateMachine *that, ExtraData &)
{
that->mm->engine->markObjects(that->mm->m_markStack.get());
return GCState::MarkJSStack;
}
GCState markJSStack(GCStateMachine *that, ExtraData &)
{
that->mm->collectFromJSStack(that->mm->markStack());
return GCState::InitMarkPersistentValues;
}
GCState initMarkPersistentValues(GCStateMachine *that, ExtraData &stateData)
{
if (!that->mm->m_persistentValues)
return GCState::InitMarkWeakValues; // no persistent values to mark
stateData = GCIteratorStorage { that->mm->m_persistentValues->begin() };
return GCState::MarkPersistentValues;
}
static constexpr int markLoopIterationCount = 1024;
bool wasDrainNecessary(MarkStack *ms, QDeadlineTimer deadline)
{
if (ms->remainingBeforeSoftLimit() > markLoopIterationCount)
return false;
// drain
ms->drain(deadline);
return true;
}
GCState markPersistentValues(GCStateMachine *that, ExtraData &stateData) {
auto markStack = that->mm->markStack();
if (wasDrainNecessary(markStack, that->deadline) && that->deadline.hasExpired())
return GCState::MarkPersistentValues;
PersistentValueStorage::Iterator& it = get<GCIteratorStorage>(stateData).it;
// avoid repeatedly hitting the timer constantly by batching iterations
for (int i = 0; i < markLoopIterationCount; ++i) {
if (!it.p)
return GCState::InitMarkWeakValues;
if (Managed *m = (*it).as<Managed>())
m->mark(markStack);
++it;
}
return GCState::MarkPersistentValues;
}
GCState initMarkWeakValues(GCStateMachine *that, ExtraData &stateData)
{
stateData = GCIteratorStorage { that->mm->m_weakValues->begin() };
return GCState::MarkWeakValues;
}
GCState markWeakValues(GCStateMachine *that, ExtraData &stateData)
{
auto markStack = that->mm->markStack();
if (wasDrainNecessary(markStack, that->deadline) && that->deadline.hasExpired())
return GCState::MarkWeakValues;
PersistentValueStorage::Iterator& it = get<GCIteratorStorage>(stateData).it;
// avoid repeatedly hitting the timer constantly by batching iterations
for (int i = 0; i < markLoopIterationCount; ++i) {
if (!it.p)
return GCState::MarkDrain;
QObjectWrapper *qobjectWrapper = (*it).as<QObjectWrapper>();
++it;
if (!qobjectWrapper)
continue;
QObject *qobject = qobjectWrapper->object();
if (!qobject)
continue;
bool keepAlive = QQmlData::keepAliveDuringGarbageCollection(qobject);
if (!keepAlive) {
if (QObject *parent = qobject->parent()) {
while (parent->parent())
parent = parent->parent();
keepAlive = QQmlData::keepAliveDuringGarbageCollection(parent);
}
}
if (keepAlive)
qobjectWrapper->mark(that->mm->markStack());
}
return GCState::MarkWeakValues;
}
GCState markDrain(GCStateMachine *that, ExtraData &)
{
if (that->deadline.isForever()) {
that->mm->markStack()->drain();
return GCState::MarkReady;
}
auto drainState = that->mm->m_markStack->drain(that->deadline);
return drainState == MarkStack::DrainState::Complete
? GCState::MarkReady
: GCState::MarkDrain;
}
GCState markReady(GCStateMachine *that, ExtraData &)
{
auto isIncrementalRun = [](GCStateMachine* that){
return !that->mm->aggressiveGC && that->timeLimit.count() > 0;
};
if (that->mm->crossValidateIncrementalGC && isIncrementalRun(that))
return GCState::CrossValidateIncrementalMarkPhase;
return GCState::InitCallDestroyObjects;
}
GCState crossValidateIncrementalMarkPhase(GCStateMachine *that, ExtraData &)
{
struct {
Chunk* operator()(Chunk* chunk) { return chunk; }
Chunk* operator()(const HugeItemAllocator::HugeChunk& chunk) { return chunk.chunk; }
} getChunk{};
auto takeBlackBitmap = [&getChunk](auto& allocator, std::vector<quintptr>& storage){
for (auto chunk : allocator.chunks) {
for (auto& bitmap : getChunk(chunk)->blackBitmap) {
storage.push_back(bitmap);
}
getChunk(chunk)->resetBlackBits();
}
};
auto runMarkPhase = [](GCStateMachine* that) {
that->reset();
that->mm->m_markStack.reset();
while (that->state != GCStateMachine::MarkReady) {
GCStateInfo& stateInfo = that->stateInfoMap[int(that->state)];
that->state = stateInfo.execute(that, that->stateData);
}
};
auto checkBlackBitmap = [&that, &getChunk](auto& allocator, const std::vector<quintptr>& storedBitmap) {
auto reportError = [&allocator, &getChunk, &that](std::size_t chunk_index, std::size_t bitmap_index, uint bit_index){
Q_UNUSED(that);
auto object = reinterpret_cast<Heap::Base*>(getChunk(allocator.chunks[chunk_index])->realBase() + (bit_index + (bitmap_index*Chunk::Bits)));
qDebug() << "Cross Validation Error on chunk" << chunk_index
<< "on bitmap piece" << bitmap_index << "and bit" << bit_index
<< ((object->internalClass) ? "With type" : "")
<< ((object->internalClass) ?
Managed::typeToString(Managed::Type(object->internalClass->vtable->type)) : QString());
#ifdef QT_BUILD_INTERNAL
that->bitmapErrors.emplace_back(chunk_index, bitmap_index, bit_index);
#endif
};
auto original = storedBitmap.begin();
for (std::size_t chunk_index = 0; original != storedBitmap.end() && chunk_index < allocator.chunks.size(); ++chunk_index) {
for (std::size_t bitmap_index = 0; bitmap_index < Chunk::EntriesInBitmap; ++bitmap_index) {
if (auto differences = (~(*original)) & getChunk(allocator.chunks[chunk_index])->blackBitmap[bitmap_index]) {
while (differences != 0) {
uint bit_index = qCountTrailingZeroBits(differences);
reportError(chunk_index, bitmap_index, bit_index);
differences ^= quintptr{1} << bit_index;
}
}
++original;
}
}
};
#ifdef QT_BUILD_INTERNAL
that->bitmapErrors.clear();
#endif
std::vector<quintptr> blockBitmap{};
blockBitmap.reserve(Chunk::EntriesInBitmap * that->mm->blockAllocator.chunks.size());
takeBlackBitmap(that->mm->blockAllocator, blockBitmap);
std::vector<quintptr> hugeItemBitmap{};
hugeItemBitmap.reserve(Chunk::EntriesInBitmap * that->mm->hugeItemAllocator.chunks.size());
takeBlackBitmap(that->mm->hugeItemAllocator, hugeItemBitmap);
std::vector<quintptr> internalClassBitmap{};
internalClassBitmap.reserve(Chunk::EntriesInBitmap * that->mm->icAllocator.chunks.size());
takeBlackBitmap(that->mm->icAllocator, internalClassBitmap);
runMarkPhase(that);
checkBlackBitmap(that->mm->blockAllocator, blockBitmap);
checkBlackBitmap(that->mm->hugeItemAllocator, hugeItemBitmap);
checkBlackBitmap(that->mm->icAllocator, internalClassBitmap);
return GCState::InitCallDestroyObjects;
}
/** \!internal
collects new references from the stack, then drains the mark stack again
*/
void redrain(GCStateMachine *that)
{
that->mm->collectFromJSStack(that->mm->markStack());
that->mm->m_markStack->drain();
}
GCState initCallDestroyObjects(GCStateMachine *that, ExtraData &stateData)
{
// as we don't have a deletion barrier, we need to rescan the stack
redrain(that);
if (!that->mm->m_weakValues)
return GCState::FreeWeakMaps; // no need to call destroy objects
stateData = GCIteratorStorage { that->mm->m_weakValues->begin() };
return GCState::CallDestroyObjects;
}
GCState callDestroyObject(GCStateMachine *that, ExtraData &stateData)
{
PersistentValueStorage::Iterator& it = get<GCIteratorStorage>(stateData).it;
// destroyObject might call user code, which really shouldn't call back into the gc
auto oldState = std::exchange(that->mm->gcBlocked, QV4::MemoryManager::Blockness::InCriticalSection);
auto cleanup = qScopeGuard([&]() {
that->mm->gcBlocked = oldState;
});
// avoid repeatedly hitting the timer constantly by batching iterations
for (int i = 0; i < markLoopIterationCount; ++i) {
if (!it.p)
return GCState::FreeWeakMaps;
Managed *m = (*it).managed();
++it;
if (!m || m->markBit())
continue;
// we need to call destroyObject on qobjectwrappers now, so that they can emit the destroyed
// signal before we start sweeping the heap
if (QObjectWrapper *qobjectWrapper = m->as<QObjectWrapper>())
qobjectWrapper->destroyObject(/*lastSweep =*/false);
}
return GCState::CallDestroyObjects;
}
void freeWeakMaps(MemoryManager *mm)
{
for (auto [map, lastMap] = std::tuple {mm->weakMaps, &mm->weakMaps }; map; map = map->nextWeakMap) {
if (!map->isMarked())
continue;
map->removeUnmarkedKeys();
*lastMap = map;
lastMap = &map->nextWeakMap;
}
}
GCState freeWeakMaps(GCStateMachine *that, ExtraData &)
{
freeWeakMaps(that->mm);
return GCState::FreeWeakSets;
}
void freeWeakSets(MemoryManager *mm)
{
for (auto [set, lastSet] = std::tuple {mm->weakSets, &mm->weakSets}; set; set = set->nextWeakSet) {
if (!set->isMarked())
continue;
set->removeUnmarkedKeys();
*lastSet = set;
lastSet = &set->nextWeakSet;
}
}
GCState freeWeakSets(GCStateMachine *that, ExtraData &)
{
freeWeakSets(that->mm);
return GCState::HandleQObjectWrappers;
}
GCState handleQObjectWrappers(GCStateMachine *that, ExtraData &)
{
that->mm->cleanupDeletedQObjectWrappersInSweep();
return GCState::DoSweep;
}
GCState doSweep(GCStateMachine *that, ExtraData &)
{
auto mm = that->mm;
mm->engine->identifierTable->sweep();
mm->blockAllocator.sweep();
mm->hugeItemAllocator.sweep(that->mm->gcCollectorStats ? increaseFreedCountForClass : nullptr);
mm->icAllocator.sweep();
// reset all black bits
mm->blockAllocator.resetBlackBits();
mm->hugeItemAllocator.resetBlackBits();
mm->icAllocator.resetBlackBits();
mm->usedSlotsAfterLastFullSweep = mm->blockAllocator.usedSlotsAfterLastSweep + mm->icAllocator.usedSlotsAfterLastSweep;
mm->gcBlocked = MemoryManager::Unblocked;
mm->m_markStack.reset();
mm->engine->isGCOngoing = false;
mm->updateUnmanagedHeapSizeGCLimit();
return GCState::Invalid;
}
}
MemoryManager::MemoryManager(ExecutionEngine *engine)
: engine(engine)
, chunkAllocator(new ChunkAllocator)
, blockAllocator(chunkAllocator, engine)
, icAllocator(chunkAllocator, engine)
, hugeItemAllocator(chunkAllocator, engine)
, m_persistentValues(new PersistentValueStorage(engine))
, m_weakValues(new PersistentValueStorage(engine))
, unmanagedHeapSizeGCLimit(MinUnmanagedHeapSizeGCLimit)
, aggressiveGC(!qEnvironmentVariableIsEmpty("QV4_MM_AGGRESSIVE_GC"))
, crossValidateIncrementalGC(qEnvironmentVariableIsSet("QV4_MM_CROSS_VALIDATE_INCREMENTAL_GC"))
, gcStats(lcGcStats().isDebugEnabled())
, gcCollectorStats(lcGcAllocatorStats().isDebugEnabled())
{
#ifdef V4_USE_VALGRIND
VALGRIND_CREATE_MEMPOOL(this, 0, true);
#endif
memset(statistics.allocations, 0, sizeof(statistics.allocations));
if (gcStats)
blockAllocator.allocationStats = statistics.allocations;
gcStateMachine = std::make_unique<GCStateMachine>();
gcStateMachine->mm = this;
gcStateMachine->stateInfoMap[GCState::MarkStart] = {
markStart,
false,
};
gcStateMachine->stateInfoMap[GCState::MarkGlobalObject] = {
markGlobalObject,
false,
};
gcStateMachine->stateInfoMap[GCState::MarkJSStack] = {
markJSStack,
false,
};
gcStateMachine->stateInfoMap[GCState::InitMarkPersistentValues] = {
initMarkPersistentValues,
false,
};
gcStateMachine->stateInfoMap[GCState::MarkPersistentValues] = {
markPersistentValues,
false,
};
gcStateMachine->stateInfoMap[GCState::InitMarkWeakValues] = {
initMarkWeakValues,
false,
};
gcStateMachine->stateInfoMap[GCState::MarkWeakValues] = {
markWeakValues,
false,
};
gcStateMachine->stateInfoMap[GCState::MarkDrain] = {
markDrain,
false,
};
gcStateMachine->stateInfoMap[GCState::MarkReady] = {
markReady,
false,
};
gcStateMachine->stateInfoMap[GCState::CrossValidateIncrementalMarkPhase] = {
crossValidateIncrementalMarkPhase,
false,
};
gcStateMachine->stateInfoMap[GCState::InitCallDestroyObjects] = {
initCallDestroyObjects,
false,
};
gcStateMachine->stateInfoMap[GCState::CallDestroyObjects] = {
callDestroyObject,
false,
};
gcStateMachine->stateInfoMap[GCState::FreeWeakMaps] = {
freeWeakMaps,
false,
};
gcStateMachine->stateInfoMap[GCState::FreeWeakSets] = {
freeWeakSets,
true, // ensure that handleQObjectWrappers runs in isolation
};
gcStateMachine->stateInfoMap[GCState::HandleQObjectWrappers] = {
handleQObjectWrappers,
false,
};
gcStateMachine->stateInfoMap[GCState::DoSweep] = {
doSweep,
false,
};
}
Heap::Base *MemoryManager::allocString(std::size_t unmanagedSize)
{
const size_t stringSize = align(sizeof(Heap::String));
#ifdef MM_STATS
lastAllocRequestedSlots = stringSize >> Chunk::SlotSizeShift;
++allocationCount;
#endif
unmanagedHeapSize += unmanagedSize;
HeapItem *m = allocate(&blockAllocator, stringSize);
memset(m, 0, stringSize);
return *m;
}
Heap::Base *MemoryManager::allocData(std::size_t size)
{
#ifdef MM_STATS
lastAllocRequestedSlots = size >> Chunk::SlotSizeShift;
++allocationCount;
#endif
Q_ASSERT(size >= Chunk::SlotSize);
Q_ASSERT(size % Chunk::SlotSize == 0);
HeapItem *m = allocate(&blockAllocator, size);
memset(m, 0, size);
return *m;
}
Heap::Object *MemoryManager::allocObjectWithMemberData(const QV4::VTable *vtable, uint nMembers)
{
uint size = (vtable->nInlineProperties + vtable->inlinePropertyOffset)*sizeof(Value);
Q_ASSERT(!(size % sizeof(HeapItem)));
Heap::Object *o;
if (nMembers <= vtable->nInlineProperties) {
o = static_cast<Heap::Object *>(allocData(size));
} else {
// Allocate both in one go through the block allocator
nMembers -= vtable->nInlineProperties;
std::size_t memberSize = align(sizeof(Heap::MemberData) + (nMembers - 1)*sizeof(Value));
size_t totalSize = size + memberSize;
Heap::MemberData *m;
if (totalSize > Chunk::DataSize) {
o = static_cast<Heap::Object *>(allocData(size));
m = hugeItemAllocator.allocate(memberSize)->as<Heap::MemberData>();
} else {
HeapItem *mh = reinterpret_cast<HeapItem *>(allocData(totalSize));
Heap::Base *b = *mh;
o = static_cast<Heap::Object *>(b);
mh += (size >> Chunk::SlotSizeShift);
m = mh->as<Heap::MemberData>();
Chunk *c = mh->chunk();
size_t index = mh - c->realBase();
Chunk::setBit(c->objectBitmap, index);
Chunk::clearBit(c->extendsBitmap, index);
}
m->internalClass.set(engine, engine->internalClasses(EngineBase::Class_MemberData));
o->memberData.set(engine, m);
Q_ASSERT(o->memberData->internalClass);
m->values.alloc = static_cast<uint>((memberSize - sizeof(Heap::MemberData) + sizeof(Value))/sizeof(Value));
m->values.size = o->memberData->values.alloc;
m->init();
}
return o;
}
static uint markStackSize = 0;
MarkStack::MarkStack(ExecutionEngine *engine)
: m_engine(engine)
{
m_base = (Heap::Base **)engine->gcStack->base();
m_top = m_base;
const size_t size = engine->maxGCStackSize() / sizeof(Heap::Base);
m_hardLimit = m_base + size;
m_softLimit = m_base + size * 3 / 4;
}
void MarkStack::drain()
{
// we're not calling drain(QDeadlineTimer::Forever) as that has higher overhead
while (m_top > m_base) {
Heap::Base *h = pop();
++markStackSize;
Q_ASSERT(h); // at this point we should only have Heap::Base objects in this area on the stack. If not, weird things might happen.
Q_ASSERT(h->internalClass);
h->internalClass->vtable->markObjects(h, this);
}
}
MarkStack::DrainState MarkStack::drain(QDeadlineTimer deadline)
{
do {
for (int i = 0; i <= markLoopIterationCount * 10; ++i) {
if (m_top == m_base)
return DrainState::Complete;
Heap::Base *h = pop();
++markStackSize;
Q_ASSERT(h); // at this point we should only have Heap::Base objects in this area on the stack. If not, weird things might happen.
Q_ASSERT(h->internalClass);
h->internalClass->vtable->markObjects(h, this);
}
} while (!deadline.hasExpired());
return DrainState::Ongoing;
}
void MarkStack::setSoftLimit(size_t size)
{
m_softLimit = m_base + size;
Q_ASSERT(m_softLimit < m_hardLimit);
}
void MemoryManager::onEventLoop()
{
if (engine->inShutdown)
return;
if (gcBlocked == InCriticalSection) {
QMetaObject::invokeMethod(engine->publicEngine, [this]{
onEventLoop();
}, Qt::QueuedConnection);
return;
}
if (gcStateMachine->inProgress()) {
gcStateMachine->step();
}
}
void MemoryManager::setGCTimeLimit(int timeMs)
{
gcStateMachine->timeLimit = std::chrono::milliseconds(timeMs);
}
void MemoryManager::sweep(bool lastSweep, ClassDestroyStatsCallback classCountPtr)
{
for (PersistentValueStorage::Iterator it = m_weakValues->begin(); it != m_weakValues->end(); ++it) {
Managed *m = (*it).managed();
if (!m || m->markBit())
continue;
// we need to call destroyObject on qobjectwrappers now, so that they can emit the destroyed
// signal before we start sweeping the heap
if (QObjectWrapper *qobjectWrapper = (*it).as<QObjectWrapper>()) {
qobjectWrapper->destroyObject(lastSweep);
}
}
freeWeakMaps(this);
freeWeakSets(this);
cleanupDeletedQObjectWrappersInSweep();
if (!lastSweep) {
engine->identifierTable->sweep();
blockAllocator.sweep(/*classCountPtr*/);
hugeItemAllocator.sweep(classCountPtr);
icAllocator.sweep(/*classCountPtr*/);
}
// reset all black bits
blockAllocator.resetBlackBits();
hugeItemAllocator.resetBlackBits();
icAllocator.resetBlackBits();
usedSlotsAfterLastFullSweep = blockAllocator.usedSlotsAfterLastSweep + icAllocator.usedSlotsAfterLastSweep;
updateUnmanagedHeapSizeGCLimit();
gcBlocked = MemoryManager::Unblocked;
}
/*
\internal
Helper function used in sweep to clean up the (to-be-freed) QObjectWrapper
Used both in MemoryManager::sweep, and the corresponding gc statemachine phase
*/
void MemoryManager::cleanupDeletedQObjectWrappersInSweep()
{
// onDestruction handlers may have accessed other QObject wrappers and reset their value, so ensure
// that they are all set to undefined.
for (PersistentValueStorage::Iterator it = m_weakValues->begin(); it != m_weakValues->end(); ++it) {
Managed *m = (*it).managed();
if (!m || m->markBit())
continue;
(*it) = Value::undefinedValue();
}
// Now it is time to free QV4::QObjectWrapper Value, we must check the Value's tag to make sure its object has been destroyed
const int pendingCount = m_pendingFreedObjectWrapperValue.size();
if (pendingCount) {
QVector<Value *> remainingWeakQObjectWrappers;
remainingWeakQObjectWrappers.reserve(pendingCount);
for (int i = 0; i < pendingCount; ++i) {
Value *v = m_pendingFreedObjectWrapperValue.at(i);
if (v->isUndefined() || v->isEmpty())
PersistentValueStorage::free(v);
else
remainingWeakQObjectWrappers.append(v);
}
m_pendingFreedObjectWrapperValue = remainingWeakQObjectWrappers;
}
if (MultiplyWrappedQObjectMap *multiplyWrappedQObjects = engine->m_multiplyWrappedQObjects) {
for (MultiplyWrappedQObjectMap::Iterator it = multiplyWrappedQObjects->begin(); it != multiplyWrappedQObjects->end();) {
if (it.value().isNullOrUndefined())
it = multiplyWrappedQObjects->erase(it);
else
++it;
}
}
}
bool MemoryManager::shouldRunGC() const
{
size_t total = blockAllocator.totalSlots() + icAllocator.totalSlots();
if (total > MinSlotsGCLimit && usedSlotsAfterLastFullSweep * GCOverallocation < total * 100)
return true;
return false;
}
static size_t dumpBins(BlockAllocator *b, const char *title)
{
const QLoggingCategory &stats = lcGcAllocatorStats();
size_t totalSlotMem = 0;
if (title)
qDebug(stats) << "Slot map for" << title << "allocator:";
for (uint i = 0; i < BlockAllocator::NumBins; ++i) {
uint nEntries = 0;
HeapItem *h = b->freeBins[i];
while (h) {
++nEntries;
totalSlotMem += h->freeData.availableSlots;
h = h->freeData.next;
}
if (title)
qDebug(stats) << " number of entries in slot" << i << ":" << nEntries;
}
SDUMP() << " large slot map";
HeapItem *h = b->freeBins[BlockAllocator::NumBins - 1];
while (h) {
SDUMP() << " " << Qt::hex << (quintptr(h)/32) << h->freeData.availableSlots;
h = h->freeData.next;
}
if (title)
qDebug(stats) << " total mem in bins" << totalSlotMem*Chunk::SlotSize;
return totalSlotMem*Chunk::SlotSize;
}
/*!
\internal
Precondition: Incremental garbage collection must be currently active
Finishes incremental garbage collection, unless in a critical section
Code entering a critical section is expected to check if we need to
force a gc completion, and to trigger the gc again if necessary
when exiting the critcial section.
Returns \c true if the gc cycle completed, false otherwise.
*/
bool MemoryManager::tryForceGCCompletion()
{
if (gcBlocked == InCriticalSection) {
qCDebug(lcGcForcedRuns)
<< "Tried to force the GC to complete a run but failed due to being in a critical section.";
return false;
}
const bool incrementalGCIsAlreadyRunning = m_markStack != nullptr;
Q_ASSERT(incrementalGCIsAlreadyRunning);
qCDebug(lcGcForcedRuns) << "Forcing the GC to complete a run.";
auto oldTimeLimit = std::exchange(gcStateMachine->timeLimit, std::chrono::microseconds::max());
while (gcStateMachine->inProgress()) {
gcStateMachine->step();
}
gcStateMachine->timeLimit = oldTimeLimit;
return true;
}
void MemoryManager::runFullGC()
{
runGC();
const bool incrementalGCStillRunning = m_markStack != nullptr;
if (incrementalGCStillRunning)
tryForceGCCompletion();
}
void MemoryManager::runGC()
{
if (gcBlocked != Unblocked) {
return;
}
gcBlocked = MemoryManager::NormalBlocked;
if (gcStats) {
statistics.maxReservedMem = qMax(statistics.maxReservedMem, getAllocatedMem());
statistics.maxAllocatedMem = qMax(statistics.maxAllocatedMem, getUsedMem() + getLargeItemsMem());
}
if (!gcCollectorStats) {
gcStateMachine->step();
} else {
bool triggeredByUnmanagedHeap = (unmanagedHeapSize > unmanagedHeapSizeGCLimit);
size_t oldUnmanagedSize = unmanagedHeapSize;
const size_t totalMem = getAllocatedMem();
const size_t usedBefore = getUsedMem();
const size_t largeItemsBefore = getLargeItemsMem();
const QLoggingCategory &stats = lcGcAllocatorStats();
qDebug(stats) << "========== GC ==========";
#ifdef MM_STATS
qDebug(stats) << " Triggered by alloc request of" << lastAllocRequestedSlots << "slots.";
qDebug(stats) << " Allocations since last GC" << allocationCount;
allocationCount = 0;
#endif
size_t oldChunks = blockAllocator.chunks.size();
qDebug(stats) << "Allocated" << totalMem << "bytes in" << oldChunks << "chunks";
qDebug(stats) << "Fragmented memory before GC" << (totalMem - usedBefore);
dumpBins(&blockAllocator, "Block");
dumpBins(&icAllocator, "InternalClass");
QElapsedTimer t;
t.start();
gcStateMachine->step();
qint64 markTime = t.nsecsElapsed()/1000;
t.start();
const size_t usedAfter = getUsedMem();
const size_t largeItemsAfter = getLargeItemsMem();
if (triggeredByUnmanagedHeap) {
qDebug(stats) << "triggered by unmanaged heap:";
qDebug(stats) << " old unmanaged heap size:" << oldUnmanagedSize;
qDebug(stats) << " new unmanaged heap:" << unmanagedHeapSize;
qDebug(stats) << " unmanaged heap limit:" << unmanagedHeapSizeGCLimit;
}
size_t memInBins = dumpBins(&blockAllocator, "Block")
+ dumpBins(&icAllocator, "InternalClasss");
qDebug(stats) << "Marked object in" << markTime << "us.";
qDebug(stats) << " " << markStackSize << "objects marked";
// sort our object types by number of freed instances
MMStatsHash freedObjectStats;
std::swap(freedObjectStats, *freedObjectStatsGlobal());
typedef std::pair<const char*, int> ObjectStatInfo;
std::vector<ObjectStatInfo> freedObjectsSorted;
freedObjectsSorted.reserve(freedObjectStats.size());
for (auto it = freedObjectStats.constBegin(); it != freedObjectStats.constEnd(); ++it) {
freedObjectsSorted.push_back(std::make_pair(it.key(), it.value()));
}
std::sort(freedObjectsSorted.begin(), freedObjectsSorted.end(), [](const ObjectStatInfo &a, const ObjectStatInfo &b) {
return a.second > b.second && strcmp(a.first, b.first) < 0;
});
qDebug(stats) << "Used memory before GC:" << usedBefore;
qDebug(stats) << "Used memory after GC:" << usedAfter;
qDebug(stats) << "Freed up bytes :" << (usedBefore - usedAfter);
qDebug(stats) << "Freed up chunks :" << (oldChunks - blockAllocator.chunks.size());
size_t lost = blockAllocator.allocatedMem() + icAllocator.allocatedMem()
- memInBins - usedAfter;
if (lost)
qDebug(stats) << "!!!!!!!!!!!!!!!!!!!!! LOST MEM:" << lost << "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!";
if (largeItemsBefore || largeItemsAfter) {
qDebug(stats) << "Large item memory before GC:" << largeItemsBefore;
qDebug(stats) << "Large item memory after GC:" << largeItemsAfter;
qDebug(stats) << "Large item memory freed up:" << (largeItemsBefore - largeItemsAfter);
}
for (auto it = freedObjectsSorted.cbegin(); it != freedObjectsSorted.cend(); ++it) {
qDebug(stats).noquote() << QString::fromLatin1("Freed JS type: %1 (%2 instances)").arg(QString::fromLatin1(it->first), QString::number(it->second));
}
qDebug(stats) << "======== End GC ========";
}
if (gcStats)
statistics.maxUsedMem = qMax(statistics.maxUsedMem, getUsedMem() + getLargeItemsMem());
}
size_t MemoryManager::getUsedMem() const
{
return blockAllocator.usedMem() + icAllocator.usedMem();
}
size_t MemoryManager::getAllocatedMem() const
{
return blockAllocator.allocatedMem() + icAllocator.allocatedMem() + hugeItemAllocator.usedMem();
}
size_t MemoryManager::getLargeItemsMem() const
{
return hugeItemAllocator.usedMem();
}
void MemoryManager::updateUnmanagedHeapSizeGCLimit()
{
if (3*unmanagedHeapSizeGCLimit <= 4 * unmanagedHeapSize) {
// more than 75% full, raise limit
unmanagedHeapSizeGCLimit = std::max(unmanagedHeapSizeGCLimit,
unmanagedHeapSize) * 2;
} else if (unmanagedHeapSize * 4 <= unmanagedHeapSizeGCLimit) {
// less than 25% full, lower limit
unmanagedHeapSizeGCLimit = qMax(std::size_t(MinUnmanagedHeapSizeGCLimit),
unmanagedHeapSizeGCLimit/2);
}
if (aggressiveGC && !engine->inShutdown) {
// ensure we don't 'loose' any memory
// but not during shutdown, because than we skip parts of sweep
// and use freeAll instead
Q_ASSERT(blockAllocator.allocatedMem()
== blockAllocator.usedMem() + dumpBins(&blockAllocator, nullptr));
Q_ASSERT(icAllocator.allocatedMem()
== icAllocator.usedMem() + dumpBins(&icAllocator, nullptr));
}
}
void MemoryManager::registerWeakMap(Heap::MapObject *map)
{
map->nextWeakMap = weakMaps;
weakMaps = map;
}
void MemoryManager::registerWeakSet(Heap::SetObject *set)
{
set->nextWeakSet = weakSets;
weakSets = set;
}
MemoryManager::~MemoryManager()
{
delete m_persistentValues;
dumpStats();
// do one last non-incremental sweep to clean up C++ objects
// first, abort any on-going incremental gc operation
setGCTimeLimit(-1);
if (engine->isGCOngoing) {
engine->isGCOngoing = false;
m_markStack.reset();
gcStateMachine->state = GCState::Invalid;
blockAllocator.resetBlackBits();
hugeItemAllocator.resetBlackBits();
icAllocator.resetBlackBits();
}
// then sweep
sweep(/*lastSweep*/true);
blockAllocator.freeAll();
hugeItemAllocator.freeAll();
icAllocator.freeAll();
delete m_weakValues;
#ifdef V4_USE_VALGRIND
VALGRIND_DESTROY_MEMPOOL(this);
#endif
delete chunkAllocator;
}
void MemoryManager::dumpStats() const
{
if (!gcStats)
return;
const QLoggingCategory &stats = lcGcStats();
qDebug(stats) << "Qml GC memory allocation statistics:";
qDebug(stats) << "Total memory allocated:" << statistics.maxReservedMem;
qDebug(stats) << "Max memory used before a GC run:" << statistics.maxAllocatedMem;
qDebug(stats) << "Max memory used after a GC run:" << statistics.maxUsedMem;
qDebug(stats) << "Requests for different item sizes:";
for (int i = 1; i < BlockAllocator::NumBins - 1; ++i)
qDebug(stats) << " <" << (i << Chunk::SlotSizeShift) << " bytes: " << statistics.allocations[i];
qDebug(stats) << " >=" << ((BlockAllocator::NumBins - 1) << Chunk::SlotSizeShift) << " bytes: " << statistics.allocations[BlockAllocator::NumBins - 1];
}
void MemoryManager::collectFromJSStack(MarkStack *markStack) const
{
Value *v = engine->jsStackBase;
Value *top = engine->jsStackTop;
while (v < top) {
Managed *m = v->managed();
if (m) {
Q_ASSERT(m->inUse());
// Skip pointers to already freed objects, they are bogus as well
m->mark(markStack);
}
++v;
}
for (auto *frame = engine->currentStackFrame; frame; frame = frame->parentFrame()) {
if (!frame->isMetaTypesFrame())
continue;
const QQmlPrivate::AOTTrackedLocalsStorage *locals
= static_cast<const MetaTypesStackFrame *>(frame)->locals();
// locals have to be initialized first thing when calling the function
Q_ASSERT(locals);
locals->markObjects(markStack);
}
}
GCStateMachine::GCStateMachine()
: collectTimings(lcGcStepExecution().isDebugEnabled())
{
// base assumption: target 60fps, use at most 1/3 of time for gc
// unless overridden by env variable
bool ok = false;
auto envTimeLimit = qEnvironmentVariableIntValue("QV4_GC_TIMELIMIT", &ok );
if (!ok)
envTimeLimit = (1000 / 60) / 3;
if (envTimeLimit > 0)
timeLimit = std::chrono::milliseconds { envTimeLimit };
else
timeLimit = std::chrono::milliseconds { 0 };
}
static void logStepTiming(GCStateMachine* that, quint64 timing) {
auto registerTimingWithResetOnOverflow = [](
GCStateMachine::StepTiming& storage, quint64 timing, GCState state
) {
auto wouldOverflow = [](quint64 lhs, quint64 rhs) {
return rhs > 0 && lhs > std::numeric_limits<quint64>::max() - rhs;
};
if (wouldOverflow(storage.rolling_sum, timing) || wouldOverflow(storage.count, 1)) {
qDebug(lcGcStepExecution) << "Resetting timings storage for"
<< QMetaEnum::fromType<GCState>().key(state) << "due to overflow.";
storage.rolling_sum = timing;
storage.count = 1;
} else {
storage.rolling_sum += timing;
storage.count += 1;
}
};
GCStateMachine::StepTiming& storage = that->executionTiming[that->state];
registerTimingWithResetOnOverflow(storage, timing, that->state);
qDebug(lcGcStepExecution) << "Performed" << QMetaEnum::fromType<GCState>().key(that->state)
<< "in" << timing << "microseconds";
qDebug(lcGcStepExecution) << "This step was performed" << storage.count << " time(s), executing in"
<< (storage.rolling_sum / storage.count) << "microseconds on average.";
}
static GCState executeWithLoggingIfEnabled(GCStateMachine* that, GCStateInfo& stateInfo) {
if (!that->collectTimings)
return stateInfo.execute(that, that->stateData);
QElapsedTimer timer;
timer.start();
GCState next = stateInfo.execute(that, that->stateData);
logStepTiming(that, timer.nsecsElapsed()/1000);
return next;
}
void GCStateMachine::transition() {
if (timeLimit.count() > 0) {
deadline = QDeadlineTimer(timeLimit);
bool deadlineExpired = false;
while (!(deadlineExpired = deadline.hasExpired()) && state != GCState::Invalid) {
if (state > GCState::InitCallDestroyObjects) {
/* initCallDestroyObjects is the last action which drains the mark
stack by default. But as our write-barrier might end up putting
objects on the markStack which still reference other objects.
Especially when we call user code triggered by Component.onDestruction,
but also when we run into a timeout.
We don't redrain before InitCallDestroyObjects, as that would
potentially lead to useless busy-work (e.g., if the last referencs
to objects are removed while the mark phase is running)
*/
redrain(this);
}
qCDebug(lcGcStateTransitions) << "Preparing to execute the"
<< QMetaEnum::fromType<GCState>().key(state) << "state";
GCStateInfo& stateInfo = stateInfoMap[int(state)];
state = executeWithLoggingIfEnabled(this, stateInfo);
qCDebug(lcGcStateTransitions) << "Transitioning to the"
<< QMetaEnum::fromType<GCState>().key(state) << "state";
if (stateInfo.breakAfter)
break;
}
if (deadlineExpired)
handleTimeout(state);
if (state != GCState::Invalid)
QMetaObject::invokeMethod(mm->engine->publicEngine, [this]{
mm->onEventLoop();
}, Qt::QueuedConnection);
} else {
deadline = QDeadlineTimer::Forever;
while (state != GCState::Invalid) {
qCDebug(lcGcStateTransitions) << "Preparing to execute the"
<< QMetaEnum::fromType<GCState>().key(state) << "state";
GCStateInfo& stateInfo = stateInfoMap[int(state)];
state = executeWithLoggingIfEnabled(this, stateInfo);
qCDebug(lcGcStateTransitions) << "Transitioning to the"
<< QMetaEnum::fromType<GCState>().key(state) << "state";
}
}
}
} // namespace QV4
QT_END_NAMESPACE
#include "moc_qv4mm_p.cpp"