qtdeclarative/src/v4/qv4mm.cpp

436 lines
13 KiB
C++
Raw Normal View History

/****************************************************************************
**
** Copyright (C) 2012 Digia Plc and/or its subsidiary(-ies).
** Contact: http://www.qt-project.org/legal
**
** This file is part of Qt Creator.
**
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and Digia. For licensing terms and
** conditions see http://qt.digia.com/licensing. For further information
** use the contact form at http://qt.digia.com/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 2.1 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 2.1 requirements
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Digia gives you certain additional
** rights. These rights are described in the Digia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
****************************************************************************/
#include "qmljs_engine.h"
#include "qv4object.h"
#include "qv4objectproto.h"
#include "qv4mm.h"
#include "PageAllocation.h"
#include "StdLibExtras.h"
#include <QTime>
#include <QVector>
#include <QVector>
#include <QMap>
#include <iostream>
#include <cstdlib>
#include "qv4alloca_p.h"
using namespace QQmlJS::VM;
using namespace WTF;
static const std::size_t CHUNK_SIZE = 65536;
struct MemoryManager::Data
{
bool enableGC;
bool gcBlocked;
bool scribble;
bool aggressiveGC;
ExecutionEngine *engine;
enum { MaxItemSize = 256 };
Managed *smallItems[MaxItemSize/16];
uint nChunks[MaxItemSize/16];
uint availableItems[MaxItemSize/16];
uint allocCount[MaxItemSize/16];
struct Chunk {
PageAllocation memory;
int chunkSize;
};
QVector<Chunk> heapChunks;
QHash<Managed *, uint> protectedObject;
// statistics:
#ifdef DETAILED_MM_STATS
QVector<unsigned> allocSizeCounters;
#endif // DETAILED_MM_STATS
Data(bool enableGC)
: enableGC(enableGC)
, gcBlocked(false)
, engine(0)
{
memset(smallItems, 0, sizeof(smallItems));
memset(nChunks, 0, sizeof(nChunks));
memset(availableItems, 0, sizeof(availableItems));
memset(allocCount, 0, sizeof(allocCount));
scribble = !qgetenv("MM_SCRIBBLE").isEmpty();
aggressiveGC = !qgetenv("MM_AGGRESSIVE_GC").isEmpty();
}
~Data()
{
for (QVector<Chunk>::iterator i = heapChunks.begin(), ei = heapChunks.end(); i != ei; ++i)
i->memory.deallocate();
}
};
#define SCRIBBLE(obj, c, size) \
if (m_d->scribble) \
::memset((void *)(obj + 1), c, size - sizeof(Managed));
namespace QQmlJS { namespace VM {
bool operator<(const MemoryManager::Data::Chunk &a, const MemoryManager::Data::Chunk &b)
{
return a.memory.base() < b.memory.base();
}
} } // namespace QQmlJS::VM
MemoryManager::MemoryManager()
: m_d(new Data(true))
{
setEnableGC(true);
}
Managed *MemoryManager::alloc(std::size_t size)
{
if (m_d->aggressiveGC)
runGC();
#ifdef DETAILED_MM_STATS
willAllocate(size);
#endif // DETAILED_MM_STATS
assert(size >= 16);
assert(size % 16 == 0);
size_t pos = size >> 4;
++m_d->allocCount[pos];
// fits into a small bucket
assert(size < MemoryManager::Data::MaxItemSize);
Managed *m = m_d->smallItems[pos];
if (m)
goto found;
// try to free up space, otherwise allocate
if (m_d->allocCount[pos] > (m_d->availableItems[pos] >> 1) && !m_d->aggressiveGC) {
runGC();
m = m_d->smallItems[pos];
if (m)
goto found;
}
// no free item available, allocate a new chunk
{
// allocate larger chunks at a time to avoid excessive GC, but cap at 64M chunks
uint shift = ++m_d->nChunks[pos];
if (shift > 10)
shift = 10;
std::size_t allocSize = std::max(size, CHUNK_SIZE*(1 << shift));
allocSize = roundUpToMultipleOf(WTF::pageSize(), allocSize);
Data::Chunk allocation;
allocation.memory = PageAllocation::allocate(allocSize, OSAllocator::JSGCHeapPages);
allocation.chunkSize = size;
m_d->heapChunks.append(allocation);
qSort(m_d->heapChunks);
char *chunk = (char *)allocation.memory.base();
char *end = chunk + allocation.memory.size() - size;
memset(chunk, 0, allocation.memory.size());
Managed **last = &m_d->smallItems[pos];
while (chunk <= end) {
Managed *o = reinterpret_cast<Managed *>(chunk);
o->_data = 0;
*last = o;
last = o->nextFreeRef();
chunk += size;
}
*last = 0;
m = m_d->smallItems[pos];
m_d->availableItems[pos] += allocation.memory.size()/size - 1;
}
found:
m_d->smallItems[pos] = m->nextFree();
return m;
}
void MemoryManager::mark()
{
m_d->engine->markObjects();
for (ExecutionContext *ctxt = engine()->current; ctxt; ctxt = ctxt->parent)
ctxt->mark();
for (QHash<Managed *, uint>::const_iterator it = m_d->protectedObject.begin(); it != m_d->protectedObject.constEnd(); ++it)
it.key()->mark();
// push all caller saved registers to the stack, so we can find the objects living in these registers
#if COMPILER(MSVC)
# if CPU(X86_64)
HANDLE thread = GetCurrentThread();
WOW64_CONTEXT ctxt;
/*bool success =*/ Wow64GetThreadContext(thread, &ctxt);
# elif CPU(X86)
HANDLE thread = GetCurrentThread();
CONTEXT ctxt;
/*bool success =*/ GetThreadContext(thread, &ctxt);
# endif // CPU
#elif COMPILER(CLANG) || COMPILER(GCC)
# if CPU(X86_64)
quintptr regs[5];
asm(
"mov %%rbp, %0\n"
"mov %%r12, %1\n"
"mov %%r13, %2\n"
"mov %%r14, %3\n"
"mov %%r15, %4\n"
: "=m" (regs[0]), "=m" (regs[1]), "=m" (regs[2]), "=m" (regs[3]), "=m" (regs[4])
:
:
);
# endif // CPU
#endif // COMPILER
collectFromStack();
}
std::size_t MemoryManager::sweep()
{
std::size_t freedCount = 0;
for (QVector<Data::Chunk>::iterator i = m_d->heapChunks.begin(), ei = m_d->heapChunks.end(); i != ei; ++i)
freedCount += sweep(reinterpret_cast<char*>(i->memory.base()), i->memory.size(), i->chunkSize);
return freedCount;
}
std::size_t MemoryManager::sweep(char *chunkStart, std::size_t chunkSize, size_t size)
{
// qDebug("chunkStart @ %p, size=%x, pos=%x (%x)", chunkStart, size, size>>4, m_d->smallItems[size >> 4]);
std::size_t freedCount = 0;
Managed **f = &m_d->smallItems[size >> 4];
for (char *chunk = chunkStart, *chunkEnd = chunk + chunkSize - size; chunk <= chunkEnd; chunk += size) {
Managed *m = reinterpret_cast<Managed *>(chunk);
// qDebug("chunk @ %p, size = %lu, in use: %s, mark bit: %s",
// chunk, m->size, (m->inUse ? "yes" : "no"), (m->markBit ? "true" : "false"));
assert((intptr_t) chunk % 16 == 0);
if (m->inUse) {
if (m->markBit) {
m->markBit = 0;
} else {
// qDebug() << "-- collecting it." << m << *f << m->nextFree();
m->vtbl->destroy(m);
m->setNextFree(*f);
*f = m;
SCRIBBLE(m, 0x99, size);
++freedCount;
}
}
}
return freedCount;
}
bool MemoryManager::isGCBlocked() const
{
return m_d->gcBlocked;
}
void MemoryManager::setGCBlocked(bool blockGC)
{
m_d->gcBlocked = blockGC;
}
void MemoryManager::runGC()
{
if (!m_d->enableGC || m_d->gcBlocked) {
// qDebug() << "Not running GC.";
return;
}
// QTime t; t.start();
// qDebug() << ">>>>>>>>runGC";
mark();
// std::cerr << "GC: marked " << marks
// << " objects in " << t.elapsed()
// << "ms" << std::endl;
// t.restart();
/*std::size_t freedCount =*/ sweep();
// std::cerr << "GC: sweep freed " << freedCount
// << " objects in " << t.elapsed()
// << "ms" << std::endl;
memset(m_d->allocCount, 0, sizeof(m_d->allocCount));
}
void MemoryManager::setEnableGC(bool enableGC)
{
m_d->enableGC = enableGC;
}
MemoryManager::~MemoryManager()
{
sweep();
}
void MemoryManager::protect(Managed *m)
{
++m_d->protectedObject[m];
}
void MemoryManager::unprotect(Managed *m)
{
if (!--m_d->protectedObject[m])
m_d->protectedObject.remove(m);
}
static inline void add(QVector<Managed *> &values, const Value &v)
{
if (Object *o = v.asObject())
values.append(o);
}
void MemoryManager::setExecutionEngine(ExecutionEngine *engine)
{
m_d->engine = engine;
}
void MemoryManager::dumpStats() const
{
#ifdef DETAILED_MM_STATS
std::cerr << "=================" << std::endl;
std::cerr << "Allocation stats:" << std::endl;
std::cerr << "Requests for each chunk size:" << std::endl;
for (int i = 0; i < m_d->allocSizeCounters.size(); ++i) {
if (unsigned count = m_d->allocSizeCounters[i]) {
std::cerr << "\t" << (i << 4) << " bytes chunks: " << count << std::endl;
}
}
#endif // DETAILED_MM_STATS
}
ExecutionEngine *MemoryManager::engine() const
{
return m_d->engine;
}
#ifdef DETAILED_MM_STATS
void MemoryManager::willAllocate(std::size_t size)
{
unsigned alignedSize = (size + 15) >> 4;
QVector<unsigned> &counters = m_d->allocSizeCounters;
if ((unsigned) counters.size() < alignedSize + 1)
counters.resize(alignedSize + 1);
counters[alignedSize]++;
}
#endif // DETAILED_MM_STATS
void MemoryManager::collectFromStack() const
{
if (!m_d->heapChunks.count())
return;
quintptr valueOnStack = 0;
#if USE(PTHREADS)
# if OS(DARWIN)
void* stackTop = 0;
stackTop = pthread_get_stackaddr_np(pthread_self());
quintptr *top = static_cast<quintptr *>(stackTop);
# else
void* stackBottom = 0;
pthread_attr_t attr;
pthread_getattr_np(pthread_self(), &attr);
size_t stackSize = 0;
pthread_attr_getstack(&attr, &stackBottom, &stackSize);
pthread_attr_destroy(&attr);
quintptr *top = static_cast<quintptr *>(stackBottom) + stackSize/sizeof(quintptr);
# endif
#elif OS(WINDOWS)
# if COMPILER(MSVC)
PNT_TIB tib = (PNT_TIB)NtCurrentTeb();
quintptr *top = static_cast<quintptr*>(tib->StackBase);
# else
# error "Unsupported compiler: no way to get the top-of-stack."
# endif
#else
# error "Unsupported platform: no way to get the top-of-stack."
#endif
quintptr *current = (&valueOnStack) + 1;
// qDebug() << "collectFromStack";// << top << current << &valueOnStack;
char** heapChunkBoundaries = (char**)alloca(m_d->heapChunks.count() * 2 * sizeof(char*));
char** heapChunkBoundariesEnd = heapChunkBoundaries + 2 * m_d->heapChunks.count();
int i = 0;
for (QVector<Data::Chunk>::Iterator it = m_d->heapChunks.begin(), end =
m_d->heapChunks.end(); it != end; ++it) {
heapChunkBoundaries[i++] = reinterpret_cast<char*>(it->memory.base()) - 1;
heapChunkBoundaries[i++] = reinterpret_cast<char*>(it->memory.base()) + it->memory.size() - it->chunkSize;
}
assert(i == m_d->heapChunks.count() * 2);
for (; current < top; ++current) {
char* genericPtr =
#if QT_POINTER_SIZE == 8
reinterpret_cast<char *>((*current) & ~(quint64(Value::Type_Mask) << Value::Tag_Shift));
#else
reinterpret_cast<char *>(*current);
#endif
if (genericPtr < *heapChunkBoundaries || genericPtr > *(heapChunkBoundariesEnd - 1))
continue;
int index = qLowerBound(heapChunkBoundaries, heapChunkBoundariesEnd, genericPtr) - heapChunkBoundaries;
// An odd index means the pointer is _before_ the end of a heap chunk and therefore valid.
assert(index >= 0 && index < m_d->heapChunks.count() * 2);
if (index & 1) {
int size = m_d->heapChunks.at(index >> 1).chunkSize;
Managed *m = reinterpret_cast<Managed *>(genericPtr);
// qDebug() << " inside" << size;
if (((quintptr)m - (quintptr)heapChunkBoundaries[index-1] - 1 ) % size)
// wrongly aligned value, skip it
continue;
if (!m->inUse)
// Skip pointers to already freed objects, they are bogus as well
continue;
// qDebug() << " marking";
m->mark();
}
}
}