qtdatavis3d/tests/galaxy/galaxydata.cpp

341 lines
10 KiB
C++

/****************************************************************************
**
** Copyright (C) 2014 Digia Plc
** All rights reserved.
** For any questions to Digia, please use contact form at http://qt.io
**
** This file is part of the Qt Data Visualization module.
**
** Licensees holding valid commercial license for Qt may use this file in
** accordance with the Qt License Agreement provided with the Software
** or, alternatively, in accordance with the terms contained in a written
** agreement between you and Digia.
**
** If you have questions regarding the use of this file, please use
** contact form at http://qt.io
**
****************************************************************************/
/*
* Galaxy creation code obtained from http://beltoforion.de/galaxy/galaxy_en.html
* Thanks to Ingo Berg, great work.
* Licensed under a Creative Commons Attribution 3.0 License
* http://creativecommons.org/licenses/by/3.0/
*
*/
#include "galaxydata.h"
#include "cumulativedistributor.h"
#include "star.h"
#include <QtDataVisualization/qscatterdataproxy.h>
#include <QtDataVisualization/qvalue3daxis.h>
#include <QtDataVisualization/q3dscene.h>
#include <QtDataVisualization/q3dcamera.h>
#include <QtDataVisualization/qscatter3dseries.h>
#include <QtDataVisualization/q3dtheme.h>
#include <QtCore/qmath.h>
#include <QPainter>
#include <QDebug>
using namespace QtDataVisualization;
static const int numOfStars = 30000;
static const qreal rand_max = qreal(RAND_MAX);
GalaxyData::GalaxyData(Q3DScatter *scatter,
qreal rad,
qreal radCore,
qreal deltaAng,
qreal ex1,
qreal ex2)
: m_graph(scatter),
m_pStars(0),
m_radGalaxy(rad),
m_radCore(radCore),
m_angleOffset(deltaAng),
m_elEx1(ex1),
m_elEx2(ex2),
m_radFarField(m_radGalaxy * 2),
m_filtered(false),
m_tableSize(0)
{
m_graph->activeTheme()->setType(Q3DTheme::ThemeEbony);
m_graph->setShadowQuality(QAbstract3DGraph::ShadowQualitySoftLow);
m_graph->axisX()->setRange(-25000.0f, 25000.0f);
//m_graph->axisY()->setRange(m_minY, m_minY + m_rangeY);
m_graph->axisZ()->setRange(-25000.0f, 25000.0f);
createNormalSeries();
m_dataArray = new QScatterDataArray;
m_dataArray->resize(numOfStars);
createGalaxy();
}
GalaxyData::~GalaxyData()
{
delete m_graph;
}
void GalaxyData::createGalaxy()
{
if (m_pStars)
delete [] m_pStars;
m_pStars = new Star[numOfStars];
m_minx = 9999.9;
m_maxx = -9999.0;
m_miny = 9999.9;
m_maxy = -9999.0;
// First star is the black hole at the center
m_pStars[0].m_a = 0;
m_pStars[0].m_b = 0;
m_pStars[0].m_angle = 0;
m_pStars[0].m_theta = 0;
m_pStars[0].m_center = QVector2D(0.0f, 0.0f);
m_pStars[0].calcXY();
// second star is at the edge of the core area
m_pStars[1].m_a = m_radCore;
m_pStars[1].m_b = m_radCore * getExcentricity(m_radCore);
m_pStars[1].m_angle = getAngularOffset(m_radCore);
m_pStars[1].m_theta = 0;
m_pStars[1].m_center = QVector2D(0.0f, 0.0f);
m_pStars[1].calcXY();
checkMinMax(m_pStars[1]);
// third star is at the edge of the disk
m_pStars[2].m_a = m_radGalaxy;
m_pStars[2].m_b = m_radGalaxy * getExcentricity(m_radGalaxy);
m_pStars[2].m_angle = getAngularOffset(m_radGalaxy);
m_pStars[2].m_theta = 0;
m_pStars[2].m_center = QVector2D(0.0f, 0.0f);
m_pStars[2].calcXY();
checkMinMax(m_pStars[2]);
CumulativeDistributor cd;
cd.setupRealistic(1.0, // Maximalintensität
0.02, // k (bulge)
m_radGalaxy/3.0, // disc skalenlänge
m_radCore, // bulge radius
0, // start der intensitätskurve
m_radFarField, // ende der intensitätskurve
1000.0); // Anzahl der stützstellen
for (int i = 3; i < numOfStars; ++i) {
qreal rad = cd.valFromProp(qreal(qrand()) / rand_max);
m_pStars[i].m_a = rad;
m_pStars[i].m_b = rad * getExcentricity(rad);
m_pStars[i].m_angle = getAngularOffset(rad);
m_pStars[i].m_theta = 360.0 * ((double)rand() / RAND_MAX);
m_pStars[i].m_center = QVector2D(0.0f, 0.0f);
m_pStars[i].calcXY();
checkMinMax(m_pStars[i]);
}
qreal max = qMax(m_maxx, m_maxy);
qreal min = -qMin(m_minx, m_miny);
max = qMax(min, max);
m_range = int((max + 500.0) / 1000.0) * 1000;
m_graph->axisX()->setRange(-float(m_range), float(m_range));
m_graph->axisZ()->setRange(-float(m_range), float(m_range));
if (!m_filtered)
createNormalDataView();
else
createFilteredView();
}
void GalaxyData::createNormalSeries()
{
QScatterDataProxy *proxy = new QScatterDataProxy;
QScatter3DSeries *series = new QScatter3DSeries(proxy);
series->setMesh(QAbstract3DSeries::MeshPoint);
m_graph->addSeries(series);
}
void GalaxyData::createNormalDataView()
{
QScatterDataItem *ptrToDataArray = &m_dataArray->first();
for (uint i = 0; i < numOfStars; i++) {
ptrToDataArray->setPosition(QVector3D(m_pStars[i].m_pos.x(),
0.0f,
m_pStars[i].m_pos.y()));
ptrToDataArray++;
}
m_graph->seriesList().at(0)->dataProxy()->resetArray(m_dataArray);
}
void GalaxyData::createFilteredView()
{
int steps = (m_range / 1000) * 2;
int tableSize = steps * steps;
int *table = new int[tableSize];
for (int i = 0; i < tableSize; i++)
table[i] = 0;
qreal add = qreal(m_range);
int max = 0;
for (uint i = 0; i < numOfStars; i++) {
int x = int(m_pStars[i].m_pos.x() + add) / 1000;
int y = int(m_pStars[i].m_pos.y() + add) / 1000;
table[y * steps + x] = table[y * steps + x] + 1;
if (max < table[y * steps + x])
max = table[y * steps + x];
}
QLinearGradient gr(0, 0, 1, 100);
gr.setColorAt(0.0, Qt::white);
gr.setColorAt(0.05, Qt::green);
// gr.setColorAt(0.10, Qt::red);
// gr.setColorAt(0.15, Qt::darkGreen);
gr.setColorAt(1.0, Qt::red);
QImage image(QSize(1, 100), QImage::Format_RGB32);
QPainter pmp(&image);
pmp.setBrush(QBrush(gr));
pmp.setPen(Qt::NoPen);
pmp.drawRect(0, 0, 1, 100);
if (tableSize != m_tableSize) {
createFilteredSeries(tableSize);
m_tableSize = tableSize;
}
for (int y = 0; y < steps; y++) {
for (int x = 0; x < steps; x++) {
if (table[y * steps + x]) {
QScatterDataArray *dataArray = new QScatterDataArray;
dataArray->resize(1);
QScatterDataItem *ptrToDataArray = &dataArray->first();
ptrToDataArray->setPosition(QVector3D(float(x) * 1000.0f - add + 500.0f,
(float(table[y * steps + x]) / float(max)) * 2.0f - 1.0f,
float(y) * 1000.0f - add + 500.0f));
QScatter3DSeries *series = m_graph->seriesList().at(y * steps + x);
series->dataProxy()->resetArray(dataArray);
int pos = (float(table[y * steps + x]) / float(max)) * 100;
pos = qMin(pos, 99);
QRgb color = image.pixel(0, pos);
series->setBaseColor(QColor(color));
series->setItemSize(0.1f);
}
}
}
qDebug() << "max = " << max;
}
void GalaxyData::createFilteredSeries(int tableSize)
{
int size = m_graph->seriesList().size();
for (int i = 0; i < size; i++)
m_graph->removeSeries(m_graph->seriesList().at(0));
for (int i = 0; i < tableSize; i++) {
QScatterDataProxy *proxy = new QScatterDataProxy;
QScatter3DSeries *series = new QScatter3DSeries(proxy);
series->setMesh(QAbstract3DSeries::MeshCube);
m_graph->addSeries(series);
}
}
void GalaxyData::checkMinMax(const Star &star)
{
if (star.m_pos.x() < m_minx)
m_minx = star.m_pos.x();
if (star.m_pos.x() > m_maxx)
m_maxx = star.m_pos.x();
if (star.m_pos.y() < m_miny)
m_miny = star.m_pos.y();
if (star.m_pos.y() > m_maxy)
m_maxy = star.m_pos.y();
}
qreal GalaxyData::getExcentricity(qreal r) const
{
if (r < m_radCore)
{
// Core region of the galaxy. Innermost part is round
// excentricity increasing linear to the border of the core.
return 1 + (r / m_radCore) * (m_elEx1-1);
} else if (r > m_radCore && r <= m_radGalaxy) {
return m_elEx1 + (r - m_radCore) / (m_radGalaxy - m_radCore) * (m_elEx2 - m_elEx1);
} else if (r > m_radGalaxy && r < m_radFarField) {
// excentricity is slowly reduced to 1.
return m_elEx2 + (r - m_radGalaxy) / (m_radFarField - m_radGalaxy) * (1 - m_elEx2);
} else {
return 1.0;
}
}
qreal GalaxyData::getAngularOffset(qreal rad) const
{
return rad * m_angleOffset;
}
void GalaxyData::radiusGalaxyChanged(int value)
{
m_radGalaxy = qreal(value);
createGalaxy();
}
void GalaxyData::radiusCoreChanged(int value)
{
m_radCore = qreal(value);
createGalaxy();
}
void GalaxyData::angleOffsetChanged(int value)
{
m_angleOffset = qreal(value) / 100000.0;
createGalaxy();
}
void GalaxyData::eccentricityInnerChanged(int value)
{
m_elEx1 = qreal(value) / 100.0;
createGalaxy();
}
void GalaxyData::eccentricityOuterChanged(int value)
{
m_elEx2 = qreal(value) / 100.0;
createGalaxy();
}
void GalaxyData::setFilteredEnabled(bool enabled)
{
m_filtered = enabled;
if (enabled) {
m_graph->removeSeries(m_graph->seriesList().at(0));
createFilteredView();
} else {
int size = m_graph->seriesList().size();
for (int i = 0; i < size; i++)
m_graph->removeSeries(m_graph->seriesList().at(0));
m_tableSize = 0;
createNormalSeries();
createNormalDataView();
}
}
void GalaxyData::resetValues()
{
m_radiusGalaxySlider->setValue(15000);
m_radiusCoreSlider->setValue(4000);
m_angleOffsetSlider->setValue(40);
m_eccentricityInnerSlider->setValue(90);
m_eccentricityOuterSlider->setValue(90);
}