qtbase/src/corelib/thread/qthread_unix.cpp

1085 lines
35 KiB
C++

// Copyright (C) 2016 The Qt Company Ltd.
// Copyright (C) 2016 Intel Corporation.
// SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only
// Qt-Security score:significant reason:default
#include "qthread.h"
#include "qthread_p.h"
#include <private/qcoreapplication_p.h>
#include <private/qcore_unix_p.h>
#include "qdebug.h"
#include "qloggingcategory.h"
#include "qthreadstorage.h"
#include <private/qtools_p.h>
#if defined(Q_OS_WASM)
# include <private/qeventdispatcher_wasm_p.h>
#else
# include <private/qeventdispatcher_unix_p.h>
# if defined(Q_OS_DARWIN)
# include <private/qeventdispatcher_cf_p.h>
# elif !defined(QT_NO_GLIB)
# include <private/qeventdispatcher_glib_p.h>
# endif
#endif
#ifdef __GLIBCXX__
#include <cxxabi.h>
#endif
#include <sched.h>
#include <errno.h>
#if __has_include(<pthread_np.h>)
# include <pthread_np.h>
#endif
#if defined(Q_OS_FREEBSD)
# include <sys/cpuset.h>
#elif defined(Q_OS_BSD4)
# include <sys/sysctl.h>
#endif
#ifdef Q_OS_VXWORKS
# include <vxCpuLib.h>
# include <cpuset.h>
#endif
#ifdef Q_OS_HPUX
#include <sys/pstat.h>
#endif
#if defined(Q_OS_LINUX) && !defined(QT_LINUXBASE)
#include <sys/prctl.h>
#endif
#if defined(Q_OS_LINUX) && !defined(SCHED_IDLE)
// from linux/sched.h
# define SCHED_IDLE 5
#endif
#if defined(Q_OS_DARWIN) || !defined(Q_OS_ANDROID) && !defined(Q_OS_OPENBSD) && defined(_POSIX_THREAD_PRIORITY_SCHEDULING) && (_POSIX_THREAD_PRIORITY_SCHEDULING-0 >= 0)
#define QT_HAS_THREAD_PRIORITY_SCHEDULING
#endif
#if defined(Q_OS_QNX)
#include <sys/neutrino.h>
#endif
QT_BEGIN_NAMESPACE
[[maybe_unused]]
Q_STATIC_LOGGING_CATEGORY(lcQThread, "qt.core.thread", QtWarningMsg)
using namespace QtMiscUtils;
#if QT_CONFIG(thread)
static_assert(sizeof(pthread_t) <= sizeof(Qt::HANDLE));
enum { ThreadPriorityResetFlag = 0x80000000 };
// If we have a way to perform a timed pthread_join(), we will do it if its
// clock is not worse than the one QWaitCondition is using. This ensures that
// QThread::wait() only returns after pthread_join() or equivalent has
// returned, ensuring that the thread has definitely exited.
//
// Because only one thread can call this family of functions at a time, we
// count how many threads are waiting and all but one of them wait on a
// QWaitCondition, with the joining thread having the responsibility for waking
// up all others when the joining concludes. If the joining times out, the
// thread in charge wakes up one of the other waiters (if there's any) to
// assume responsibility for joining.
//
// If we don't have a way to perform timed pthread_join(), then we don't try
// joining a all. All waiting threads will wait for the launched thread to
// call QWaitCondition::wakeAll(). Note in this case it is possible for the
// waiting threads to conclude the launched thread has exited before it has.
//
// To support this scenario, we start the thread in detached state.
static constexpr bool UsingPThreadTimedJoin = QT_CONFIG(pthread_clockjoin)
|| (QT_CONFIG(pthread_timedjoin) && QWaitConditionClockId == CLOCK_REALTIME);
#if !QT_CONFIG(pthread_clockjoin)
int pthread_clockjoin_np(...) { return ENOSYS; } // pretend
#endif
#if !QT_CONFIG(pthread_timedjoin)
int pthread_timedjoin_np(...) { return ENOSYS; } // pretend
#endif
#if QT_CONFIG(broken_threadlocal_dtors)
// On most modern platforms, the C runtime has a helper function that helps the
// C++ runtime run the thread_local non-trivial destructors when threads exit
// and that code ensures that they are run in the correct order on program exit
// too ([basic.start.term]/2: "The destruction of all constructed objects with
// thread storage duration within that thread strongly happens before
// destroying any object with static storage duration."). In the absence of
// this function, the ordering can be wrong depending on when the first
// non-trivial thread_local object was created relative to other statics.
// Moreover, this can be racy and having our own thread_local early in
// QThreadPrivate::start() made it even more so. See QTBUG-129846 for analysis.
//
// There's a good correlation between this C++11 feature and our ability to
// call QThreadPrivate::cleanup() from destroy_thread_data().
//
// https://gcc.gnu.org/git/?p=gcc.git;a=blob;f=libstdc%2B%2B-v3/libsupc%2B%2B/atexit_thread.cc;hb=releases/gcc-14.2.0#l133
// https://github.com/llvm/llvm-project/blob/llvmorg-19.1.0/libcxxabi/src/cxa_thread_atexit.cpp#L118-L120
#endif
//
// Thus, the destruction of QThreadData is split into 3 steps:
// - finish()
// - cleanup()
// - deref & delete
//
// The reason for the first split is that user content may run as a result of
// the finished() signal, in thread_local destructors or similar, so we don't
// want to destroy the event dispatcher too soon. If we did, the event
// dispatcher could get recreated.
//
// For auxiliary threads started with QThread, finish() is run as soon as run()
// returns, while cleanup() and the deref happen at pthread_set_specific
// destruction time (except for broken_threadlocal_dtors, see above).
//
// For auxiliary threads started with something else and adopted as a
// QAdoptedThread, there's only one choice: all three steps happen at at
// pthread_set_specific destruction time.
//
// Finally, for the thread that called ::exit() (which in most cases happens by
// returning from the main() function), finish() and cleanup() happen at
// function-local static destructor time, and the deref & delete happens later,
// at global static destruction time. That way, we delete the event dispatcher
// before QLibraryStore's clean up runs and unloads remaining plugins. This
// strategy was chosen because of crashes observed while running the event
// dispatcher's destructor, and though the cause of the crash was something
// else (QFactoryLoader always loads with PreventUnloadHint set), other plugins
// may still attempt to access QThreadData in their global destructors.
Q_CONSTINIT static thread_local QThreadData *currentThreadData = nullptr;
static void destroy_current_thread_data(QThreadData *data)
{
QThread *thread = data->thread.loadAcquire();
#ifdef Q_OS_APPLE
// apparent runtime bug: the trivial has been cleared and we end up
// recreating the QThreadData
currentThreadData = data;
#endif
if (data->isAdopted) {
// If this is an adopted thread, then QThreadData owns the QThread and
// this is very likely the last reference. These pointers cannot be
// null and there is no race.
QThreadPrivate *thread_p = static_cast<QThreadPrivate *>(QObjectPrivate::get(thread));
thread_p->finish();
if constexpr (!QT_CONFIG(broken_threadlocal_dtors))
thread_p->cleanup();
} else if constexpr (!QT_CONFIG(broken_threadlocal_dtors)) {
// We may be racing the QThread destructor in another thread. With
// two-phase clean-up enabled, there's also no race because it will
// stop in a call to QThread::wait() until we call cleanup().
QThreadPrivate *thread_p = static_cast<QThreadPrivate *>(QObjectPrivate::get(thread));
thread_p->cleanup();
} else {
// We may be racing the QThread destructor in another thread and it may
// have begun destruction; we must not dereference the QThread pointer.
}
}
static void deref_current_thread_data(QThreadData *data)
{
// the QThread object may still have a reference, so this may not delete
data->deref();
// ... but we must reset it to zero before returning so we aren't
// leaving a dangling pointer.
currentThreadData = nullptr;
}
static void destroy_auxiliary_thread_data(void *p)
{
auto data = static_cast<QThreadData *>(p);
destroy_current_thread_data(data);
deref_current_thread_data(data);
}
// Utility functions for getting, setting and clearing thread specific data.
static QThreadData *get_thread_data()
{
return currentThreadData;
}
namespace {
struct QThreadDataDestroyer
{
pthread_key_t key;
QThreadDataDestroyer() noexcept
{
pthread_key_create(&key, &destroy_auxiliary_thread_data);
}
~QThreadDataDestroyer()
{
// running global static destructors upon ::exit()
if (QThreadData *data = get_thread_data())
deref_current_thread_data(data);
pthread_key_delete(key);
}
struct EarlyMainThread {
EarlyMainThread() { QThreadStoragePrivate::init(); }
~EarlyMainThread()
{
// running function-local destructors upon ::exit()
if (QThreadData *data = get_thread_data())
destroy_current_thread_data(data);
}
};
};
}
#if QT_SUPPORTS_INIT_PRIORITY
Q_DECL_INIT_PRIORITY(10)
#endif
static QThreadDataDestroyer threadDataDestroyer; // intentional non-trivial init & destruction
static void set_thread_data(QThreadData *data) noexcept
{
if (data) {
// As noted above: one global static for the thread that called
// ::exit() (which may not be a Qt thread) and the pthread_key_t for
// all others.
static QThreadDataDestroyer::EarlyMainThread currentThreadCleanup;
pthread_setspecific(threadDataDestroyer.key, data);
}
currentThreadData = data;
}
template <typename T>
static typename std::enable_if<std::is_integral_v<T>, Qt::HANDLE>::type to_HANDLE(T id)
{
return reinterpret_cast<Qt::HANDLE>(static_cast<intptr_t>(id));
}
template <typename T>
static typename std::enable_if<std::is_integral_v<T>, T>::type from_HANDLE(Qt::HANDLE id)
{
return static_cast<T>(reinterpret_cast<intptr_t>(id));
}
template <typename T>
static typename std::enable_if<std::is_pointer_v<T>, Qt::HANDLE>::type to_HANDLE(T id)
{
return id;
}
template <typename T>
static typename std::enable_if<std::is_pointer_v<T>, T>::type from_HANDLE(Qt::HANDLE id)
{
return static_cast<T>(id);
}
void QThreadData::clearCurrentThreadData()
{
set_thread_data(nullptr);
}
QThreadData *QThreadData::currentThreadData() noexcept
{
return get_thread_data();
}
QThreadData *QThreadData::createCurrentThreadData()
{
Q_ASSERT(!currentThreadData());
std::unique_ptr data = std::make_unique<QThreadData>();
// This needs to be called prior to new QAdoptedThread() to avoid
// recursion (see qobject.cpp).
set_thread_data(data.get());
QT_TRY {
data->thread.storeRelease(new QAdoptedThread(data.get()));
} QT_CATCH(...) {
clearCurrentThreadData();
QT_RETHROW;
}
return data.release();
}
void QAdoptedThread::init()
{
}
/*
QThreadPrivate
*/
extern "C" {
typedef void *(*QtThreadCallback)(void *);
}
#endif // QT_CONFIG(thread)
QAbstractEventDispatcher *QThreadPrivate::createEventDispatcher(QThreadData *data)
{
Q_UNUSED(data);
#if defined(Q_OS_DARWIN)
bool ok = false;
int value = qEnvironmentVariableIntValue("QT_EVENT_DISPATCHER_CORE_FOUNDATION", &ok);
if (ok && value > 0)
return new QEventDispatcherCoreFoundation;
else
return new QEventDispatcherUNIX;
#elif defined(Q_OS_WASM)
return new QEventDispatcherWasm();
#elif !defined(QT_NO_GLIB)
const bool isQtMainThread = data->thread.loadAcquire() == QCoreApplicationPrivate::mainThread();
if (qEnvironmentVariableIsEmpty("QT_NO_GLIB")
&& (isQtMainThread || qEnvironmentVariableIsEmpty("QT_NO_THREADED_GLIB"))
&& QEventDispatcherGlib::versionSupported())
return new QEventDispatcherGlib;
else
return new QEventDispatcherUNIX;
#else
return new QEventDispatcherUNIX;
#endif
}
#if QT_CONFIG(thread)
#if (defined(Q_OS_LINUX) || defined(Q_OS_DARWIN) || defined(Q_OS_QNX))
static void setCurrentThreadName(const char *name)
{
# if defined(Q_OS_LINUX) && !defined(QT_LINUXBASE)
prctl(PR_SET_NAME, (unsigned long)name, 0, 0, 0);
# elif defined(Q_OS_DARWIN)
pthread_setname_np(name);
# elif defined(Q_OS_QNX)
pthread_setname_np(pthread_self(), name);
# endif
}
#endif
namespace {
template <typename T>
void terminate_on_exception(T &&t)
{
#ifndef QT_NO_EXCEPTIONS
try {
#endif
std::forward<T>(t)();
#ifndef QT_NO_EXCEPTIONS
#ifdef __GLIBCXX__
// POSIX thread cancellation under glibc is implemented by throwing an exception
// of this type. Do what libstdc++ is doing and handle it specially in order not to
// abort the application if user's code calls a cancellation function.
} catch (abi::__forced_unwind &) {
throw;
#endif // __GLIBCXX__
} catch (...) {
std::terminate();
}
#endif // QT_NO_EXCEPTIONS
}
} // unnamed namespace
void *QThreadPrivate::start(void *arg)
{
#ifdef PTHREAD_CANCEL_DISABLE
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, nullptr);
#endif
QThread *thr = reinterpret_cast<QThread *>(arg);
QThreadData *data = QThreadData::get2(thr);
// If a QThread is restarted, reuse the QBindingStatus, too
data->reuseBindingStatusForNewNativeThread();
// this ensures the thread-local is created as early as possible
set_thread_data(data);
pthread_cleanup_push([](void *arg) { static_cast<QThread *>(arg)->d_func()->finish(); }, arg);
terminate_on_exception([&] {
{
QMutexLocker locker(&thr->d_func()->mutex);
// do we need to reset the thread priority?
if (thr->d_func()->priority & ThreadPriorityResetFlag) {
thr->d_func()->setPriority(QThread::Priority(thr->d_func()->priority & ~ThreadPriorityResetFlag));
}
#ifndef Q_OS_DARWIN // For Darwin we set it as an attribute when starting the thread
if (thr->d_func()->serviceLevel != QThread::QualityOfService::Auto)
thr->d_func()->setQualityOfServiceLevel(thr->d_func()->serviceLevel);
#endif
// threadId is set in QThread::start()
Q_ASSERT(data->threadId.loadRelaxed() == QThread::currentThreadId());
data->ref();
data->quitNow = thr->d_func()->exited;
}
data->ensureEventDispatcher();
data->eventDispatcher.loadRelaxed()->startingUp();
#if (defined(Q_OS_LINUX) || defined(Q_OS_DARWIN) || defined(Q_OS_QNX))
{
// Sets the name of the current thread. We can only do this
// when the thread is starting, as we don't have a cross
// platform way of setting the name of an arbitrary thread.
if (Q_LIKELY(thr->d_func()->objectName.isEmpty()))
setCurrentThreadName(thr->metaObject()->className());
else
setCurrentThreadName(std::exchange(thr->d_func()->objectName, {}).toLocal8Bit());
}
#endif
emit thr->started(QThread::QPrivateSignal());
#ifdef PTHREAD_CANCEL_DISABLE
pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, nullptr);
pthread_testcancel();
#endif
thr->run();
});
// This calls finish(); later, the currentThreadCleanup thread-local
// destructor will call cleanup().
pthread_cleanup_pop(1);
return nullptr;
}
void QThreadPrivate::finish()
{
terminate_on_exception([&] {
QThreadPrivate *d = this;
QThread *thr = q_func();
// Disable cancellation; we're already in the finishing touches of this
// thread, and we don't want cleanup to be disturbed by
// abi::__forced_unwind being thrown from all kinds of functions.
#ifdef PTHREAD_CANCEL_DISABLE
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, nullptr);
#endif
QMutexLocker locker(&d->mutex);
d->threadState = QThreadPrivate::Finishing;
locker.unlock();
emit thr->finished(QThread::QPrivateSignal());
QCoreApplication::sendPostedEvents(nullptr, QEvent::DeferredDelete);
QThreadStoragePrivate::finish(&d->data->tls);
});
if constexpr (QT_CONFIG(broken_threadlocal_dtors))
cleanup();
}
void QThreadPrivate::cleanup()
{
terminate_on_exception([&] {
QThreadPrivate *d = this;
// Disable cancellation again: we did it above, but some user code
// running between finish() and cleanup() may have turned them back on.
#ifdef PTHREAD_CANCEL_DISABLE
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, nullptr);
#endif
QMutexLocker locker(&d->mutex);
d->priority = QThread::InheritPriority;
QAbstractEventDispatcher *eventDispatcher = d->data->eventDispatcher.loadRelaxed();
if (eventDispatcher) {
d->data->eventDispatcher = nullptr;
locker.unlock();
eventDispatcher->closingDown();
delete eventDispatcher;
locker.relock();
}
d->interruptionRequested.store(false, std::memory_order_relaxed);
d->wakeAll();
});
}
/**************************************************************************
** QThread
*************************************************************************/
/*
CI tests fails on ARM architectures if we try to use the assembler, so
stick to the pthread version there. The assembler would be
// http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0344k/Babeihid.html
asm volatile ("mrc p15, 0, %0, c13, c0, 3" : "=r" (tid));
and
// see glibc/sysdeps/aarch64/nptl/tls.h
asm volatile ("mrs %0, tpidr_el0" : "=r" (tid));
for 32 and 64bit versions, respectively.
*/
Qt::HANDLE QThread::currentThreadIdImpl() noexcept
{
return to_HANDLE(pthread_self());
}
#if defined(QT_LINUXBASE) && !defined(_SC_NPROCESSORS_ONLN)
// LSB doesn't define _SC_NPROCESSORS_ONLN.
# define _SC_NPROCESSORS_ONLN 84
#endif
#ifdef Q_OS_WASM
int QThreadPrivate::idealThreadCount = 1;
#endif
#if QT_CONFIG(trivial_auto_var_init_pattern) && defined(Q_CC_GNU_ONLY)
// Don't pre-fill the automatic-storage arrays used in this function
// (important for the FreeBSD & Linux code using a VLA).
__attribute__((optimize("trivial-auto-var-init=uninitialized")))
#endif
int QThread::idealThreadCount() noexcept
{
int cores = 1;
#if defined(Q_OS_HPUX)
// HP-UX
struct pst_dynamic psd;
if (pstat_getdynamic(&psd, sizeof(psd), 1, 0) == -1) {
perror("pstat_getdynamic");
} else {
cores = (int)psd.psd_proc_cnt;
}
#elif (defined(Q_OS_LINUX) && !defined(Q_OS_ANDROID)) || defined(Q_OS_FREEBSD)
QT_WARNING_PUSH
# if defined(Q_CC_CLANG) && Q_CC_CLANG >= 1800
QT_WARNING_DISABLE_CLANG("-Wvla-cxx-extension")
# endif
// get the number of threads we're assigned, not the total in the system
constexpr qsizetype MaxCpuCount = 1024 * 1024;
constexpr qsizetype MaxCpuSetArraySize = MaxCpuCount / sizeof(cpu_set_t) / 8;
qsizetype size = 1;
do {
cpu_set_t cpuset[size];
if (sched_getaffinity(0, sizeof(cpu_set_t) * size, cpuset) == 0) {
cores = CPU_COUNT_S(sizeof(cpu_set_t) * size, cpuset);
break;
}
size *= 4;
} while (size < MaxCpuSetArraySize);
QT_WARNING_POP
#elif defined(Q_OS_BSD4)
// OpenBSD, NetBSD, BSD/OS, Darwin (macOS, iOS, etc.)
size_t len = sizeof(cores);
int mib[2];
mib[0] = CTL_HW;
mib[1] = HW_NCPU;
if (sysctl(mib, 2, &cores, &len, NULL, 0) != 0) {
perror("sysctl");
}
#elif defined(Q_OS_INTEGRITY)
#if (__INTEGRITY_MAJOR_VERSION >= 10)
// Integrity V10+ does support multicore CPUs
Value processorCount;
if (GetProcessorCount(CurrentTask(), &processorCount) == 0)
cores = processorCount;
else
#endif
// as of aug 2008 Integrity only supports one single core CPU
cores = 1;
#elif defined(Q_OS_VXWORKS)
cpuset_t cpus = vxCpuEnabledGet();
cores = 0;
// 128 cores should be enough for everyone ;)
for (int i = 0; i < 128 && !CPUSET_ISZERO(cpus); ++i) {
if (CPUSET_ISSET(cpus, i)) {
CPUSET_CLR(cpus, i);
cores++;
}
}
#elif defined(Q_OS_WASM)
cores = QThreadPrivate::idealThreadCount;
#else
// the rest: Solaris, AIX, Tru64
cores = (int)sysconf(_SC_NPROCESSORS_ONLN);
if (cores == -1)
return 1;
#endif
return cores;
}
void QThread::yieldCurrentThread()
{
sched_yield();
}
#endif // QT_CONFIG(thread)
static void qt_nanosleep(timespec amount)
{
// We'd like to use clock_nanosleep.
//
// But clock_nanosleep is from POSIX.1-2001 and both are *not*
// affected by clock changes when using relative sleeps, even for
// CLOCK_REALTIME.
//
// nanosleep is POSIX.1-1993
int r;
QT_EINTR_LOOP(r, nanosleep(&amount, &amount));
}
void QThread::sleep(unsigned long secs)
{
sleep(std::chrono::seconds{secs});
}
void QThread::msleep(unsigned long msecs)
{
sleep(std::chrono::milliseconds{msecs});
}
void QThread::usleep(unsigned long usecs)
{
sleep(std::chrono::microseconds{usecs});
}
void QThread::sleep(std::chrono::nanoseconds nsec)
{
qt_nanosleep(durationToTimespec(nsec));
}
#if QT_CONFIG(thread)
#ifdef QT_HAS_THREAD_PRIORITY_SCHEDULING
#if defined(Q_OS_QNX)
static bool calculateUnixPriority(int priority, int *sched_policy, int *sched_priority)
{
// On QNX, NormalPriority is mapped to 10. A QNX system could use a value different
// than 10 for the "normal" priority but it's difficult to achieve this so we'll
// assume that no one has ever created such a system. This makes the mapping from
// Qt priorities to QNX priorities lopsided. There's usually more space available
// to map into above the "normal" priority than below it. QNX also has a privileged
// priority range (for threads that assist the kernel). We'll assume that no Qt
// thread needs to use priorities in that range.
int priority_norm = 10;
// _sched_info::priority_priv isn't documented. You'd think that it's the start of the
// privileged priority range but it's actually the end of the unpriviledged range.
struct _sched_info info;
if (SchedInfo_r(0, *sched_policy, &info) != EOK)
return false;
if (priority == QThread::IdlePriority) {
*sched_priority = info.priority_min;
return true;
}
if (priority_norm < info.priority_min)
priority_norm = info.priority_min;
if (priority_norm > info.priority_priv)
priority_norm = info.priority_priv;
int to_min, to_max;
int from_min, from_max;
int prio;
if (priority < QThread::NormalPriority) {
to_min = info.priority_min;
to_max = priority_norm;
from_min = QThread::LowestPriority;
from_max = QThread::NormalPriority;
} else {
to_min = priority_norm;
to_max = info.priority_priv;
from_min = QThread::NormalPriority;
from_max = QThread::TimeCriticalPriority;
}
prio = ((priority - from_min) * (to_max - to_min)) / (from_max - from_min) + to_min;
prio = qBound(to_min, prio, to_max);
*sched_priority = prio;
return true;
}
#else
// Does some magic and calculate the Unix scheduler priorities
// sched_policy is IN/OUT: it must be set to a valid policy before calling this function
// sched_priority is OUT only
static bool calculateUnixPriority(int priority, int *sched_policy, int *sched_priority)
{
#ifdef SCHED_IDLE
if (priority == QThread::IdlePriority) {
*sched_policy = SCHED_IDLE;
*sched_priority = 0;
return true;
}
const int lowestPriority = QThread::LowestPriority;
#else
const int lowestPriority = QThread::IdlePriority;
#endif
const int highestPriority = QThread::TimeCriticalPriority;
int prio_min;
int prio_max;
#if defined(Q_OS_VXWORKS)
// for other scheduling policies than SCHED_RR or SCHED_FIFO
prio_min = SCHED_FIFO_LOW_PRI;
prio_max = SCHED_FIFO_HIGH_PRI;
if ((*sched_policy == SCHED_RR) || (*sched_policy == SCHED_FIFO))
#endif
{
prio_min = sched_get_priority_min(*sched_policy);
prio_max = sched_get_priority_max(*sched_policy);
}
if (prio_min == -1 || prio_max == -1)
return false;
int prio;
// crudely scale our priority enum values to the prio_min/prio_max
prio = ((priority - lowestPriority) * (prio_max - prio_min) / highestPriority) + prio_min;
prio = qMax(prio_min, qMin(prio_max, prio));
*sched_priority = prio;
return true;
}
#endif
#endif
void QThread::start(Priority priority)
{
Q_D(QThread);
QMutexLocker locker(&d->mutex);
if (d->threadState == QThreadPrivate::Finishing)
d->wait(locker, QDeadlineTimer::Forever);
if (d->threadState == QThreadPrivate::Running)
return;
d->threadState = QThreadPrivate::Running;
d->returnCode = 0;
d->exited = false;
d->interruptionRequested.store(false, std::memory_order_relaxed);
d->terminated = false;
pthread_attr_t attr;
pthread_attr_init(&attr);
if constexpr (!UsingPThreadTimedJoin)
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
#ifdef Q_OS_DARWIN
if (d->serviceLevel != QThread::QualityOfService::Auto)
pthread_attr_set_qos_class_np(&attr, d->nativeQualityOfServiceClass(), 0);
#endif
d->priority = priority;
#if defined(QT_HAS_THREAD_PRIORITY_SCHEDULING)
switch (priority) {
case InheritPriority:
{
pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED);
break;
}
default:
{
int sched_policy;
if (pthread_attr_getschedpolicy(&attr, &sched_policy) != 0) {
// failed to get the scheduling policy, don't bother
// setting the priority
qWarning("QThread::start: Cannot determine default scheduler policy");
break;
}
int prio;
if (!calculateUnixPriority(priority, &sched_policy, &prio)) {
// failed to get the scheduling parameters, don't
// bother setting the priority
qWarning("QThread::start: Cannot determine scheduler priority range");
break;
}
sched_param sp;
sp.sched_priority = prio;
if (pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED) != 0
|| pthread_attr_setschedpolicy(&attr, sched_policy) != 0
|| pthread_attr_setschedparam(&attr, &sp) != 0) {
// could not set scheduling hints, fallback to inheriting them
// we'll try again from inside the thread
pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED);
d->priority = qToUnderlying(priority) | ThreadPriorityResetFlag;
}
break;
}
}
#endif // QT_HAS_THREAD_PRIORITY_SCHEDULING
if (d->stackSize > 0) {
#if defined(_POSIX_THREAD_ATTR_STACKSIZE) && (_POSIX_THREAD_ATTR_STACKSIZE-0 > 0)
int code = pthread_attr_setstacksize(&attr, d->stackSize);
#else
int code = ENOSYS; // stack size not supported, automatically fail
#endif // _POSIX_THREAD_ATTR_STACKSIZE
if (code) {
qErrnoWarning(code, "QThread::start: Thread stack size error");
// we failed to set the stacksize, and as the documentation states,
// the thread will fail to run...
d->threadState = QThreadPrivate::NotStarted;
return;
}
}
#ifdef Q_OS_INTEGRITY
if (Q_LIKELY(objectName().isEmpty()))
pthread_attr_setthreadname(&attr, metaObject()->className());
else
pthread_attr_setthreadname(&attr, objectName().toLocal8Bit());
#else
// avoid interacting with the binding system
d->objectName = d->extraData ? d->extraData->objectName.valueBypassingBindings()
: QString();
#endif
pthread_t threadId;
int code = pthread_create(&threadId, &attr, QThreadPrivate::start, this);
if (code == EPERM) {
// caller does not have permission to set the scheduling
// parameters/policy
#if defined(QT_HAS_THREAD_PRIORITY_SCHEDULING)
pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED);
#endif
code = pthread_create(&threadId, &attr, QThreadPrivate::start, this);
}
d->data->threadId.storeRelaxed(to_HANDLE(threadId));
pthread_attr_destroy(&attr);
if (code) {
qErrnoWarning(code, "QThread::start: Thread creation error");
d->threadState = QThreadPrivate::NotStarted;
d->data->threadId.storeRelaxed(nullptr);
}
}
void QThread::terminate()
{
#if !defined(Q_OS_ANDROID)
Q_D(QThread);
QMutexLocker locker(&d->mutex);
const auto id = d->data->threadId.loadRelaxed();
if (!id)
return;
if (d->terminated) // don't try again, avoids killing the wrong thread on threadId reuse (ABA)
return;
d->terminated = true;
const bool selfCancelling = d->data == get_thread_data();
if (selfCancelling) {
// Posix doesn't seem to specify whether the stack of cancelled threads
// is unwound, and there's nothing preventing a QThread from
// terminate()ing itself, so drop the mutex before calling
// pthread_cancel():
locker.unlock();
}
if (int code = pthread_cancel(from_HANDLE<pthread_t>(id))) {
if (selfCancelling)
locker.relock();
d->terminated = false; // allow to try again
qErrnoWarning(code, "QThread::start: Thread termination error");
}
#endif
}
static void wakeAllInternal(QThreadPrivate *d)
{
d->threadState = QThreadPrivate::Finished;
if (d->waiters)
d->thread_done.wakeAll();
}
inline void QThreadPrivate::wakeAll()
{
if (data->isAdopted || !UsingPThreadTimedJoin)
wakeAllInternal(this);
}
bool QThreadPrivate::wait(QMutexLocker<QMutex> &locker, QDeadlineTimer deadline)
{
constexpr int HasJoinerBit = int(0x8000'0000); // a.k.a. sign bit
struct timespec ts, *pts = nullptr;
if (!deadline.isForever()) {
ts = deadlineToAbstime(deadline);
pts = &ts;
}
auto doJoin = [&] {
// pthread_join() & family are cancellation points
struct CancelState {
QThreadPrivate *d;
QMutexLocker<QMutex> *locker;
int joinResult = ETIMEDOUT;
static void run(void *arg) { static_cast<CancelState *>(arg)->run(); }
void run()
{
locker->relock();
if (joinResult == ETIMEDOUT && d->waiters)
d->thread_done.wakeOne();
else if (joinResult == 0)
wakeAllInternal(d);
d->waiters &= ~HasJoinerBit;
}
} nocancel = { this, &locker };
int &r = nocancel.joinResult;
// we're going to perform the join, so don't let other threads do it
waiters |= HasJoinerBit;
locker.unlock();
pthread_cleanup_push(&CancelState::run, &nocancel);
pthread_t thrId = from_HANDLE<pthread_t>(data->threadId.loadRelaxed());
if constexpr (QT_CONFIG(pthread_clockjoin))
r = pthread_clockjoin_np(thrId, nullptr, SteadyClockClockId, pts);
else
r = pthread_timedjoin_np(thrId, nullptr, pts);
Q_ASSERT(r == 0 || r == ETIMEDOUT);
pthread_cleanup_pop(1);
Q_ASSERT(waiters >= 0);
return r != ETIMEDOUT;
};
Q_ASSERT(threadState != QThreadPrivate::Finished);
Q_ASSERT(locker.isLocked());
bool result = false;
// both branches call cancellation points
++waiters;
bool mustJoin = (waiters & HasJoinerBit) == 0;
pthread_cleanup_push([](void *ptr) {
--(*static_cast<decltype(waiters) *>(ptr));
}, &waiters);
for (;;) {
if (UsingPThreadTimedJoin && mustJoin && !data->isAdopted) {
result = doJoin();
break;
}
if (!thread_done.wait(locker.mutex(), deadline))
break; // timed out
result = threadState == QThreadPrivate::Finished;
if (result)
break; // success
mustJoin = (waiters & HasJoinerBit) == 0;
}
pthread_cleanup_pop(1);
return result;
}
void QThread::setTerminationEnabled(bool enabled)
{
QThread *thr = currentThread();
Q_ASSERT_X(thr != nullptr, "QThread::setTerminationEnabled()",
"Current thread was not started with QThread.");
Q_UNUSED(thr);
#if defined(Q_OS_ANDROID)
Q_UNUSED(enabled);
#else
pthread_setcancelstate(enabled ? PTHREAD_CANCEL_ENABLE : PTHREAD_CANCEL_DISABLE, nullptr);
if (enabled)
pthread_testcancel();
#endif
}
// Caller must lock the mutex
void QThreadPrivate::setPriority(QThread::Priority threadPriority)
{
priority = threadPriority;
// copied from start() with a few modifications:
#ifdef QT_HAS_THREAD_PRIORITY_SCHEDULING
int sched_policy;
sched_param param;
if (pthread_getschedparam(from_HANDLE<pthread_t>(data->threadId.loadRelaxed()), &sched_policy, &param) != 0) {
// failed to get the scheduling policy, don't bother setting
// the priority
qWarning("QThread::setPriority: Cannot get scheduler parameters");
return;
}
int prio;
if (!calculateUnixPriority(priority, &sched_policy, &prio)) {
// failed to get the scheduling parameters, don't
// bother setting the priority
qWarning("QThread::setPriority: Cannot determine scheduler priority range");
return;
}
param.sched_priority = prio;
int status = pthread_setschedparam(from_HANDLE<pthread_t>(data->threadId.loadRelaxed()), sched_policy, &param);
# ifdef SCHED_IDLE
// were we trying to set to idle priority and failed?
if (status == -1 && sched_policy == SCHED_IDLE && errno == EINVAL) {
// reset to lowest priority possible
pthread_getschedparam(from_HANDLE<pthread_t>(data->threadId.loadRelaxed()), &sched_policy, &param);
param.sched_priority = sched_get_priority_min(sched_policy);
pthread_setschedparam(from_HANDLE<pthread_t>(data->threadId.loadRelaxed()), sched_policy, &param);
}
# else
Q_UNUSED(status);
# endif // SCHED_IDLE
#endif
}
void QThreadPrivate::setQualityOfServiceLevel(QThread::QualityOfService qosLevel)
{
[[maybe_unused]]
Q_Q(QThread);
serviceLevel = qosLevel;
#ifdef Q_OS_DARWIN
qCDebug(lcQThread) << "Setting thread QoS class to" << serviceLevel << "for thread" << q;
pthread_set_qos_class_self_np(nativeQualityOfServiceClass(), 0);
#endif
}
#ifdef Q_OS_DARWIN
qos_class_t QThreadPrivate::nativeQualityOfServiceClass() const
{
// @note Consult table[0] to see what the levels mean
// [0] https://developer.apple.com/library/archive/documentation/Performance/Conceptual/power_efficiency_guidelines_osx/PrioritizeWorkAtTheTaskLevel.html#//apple_ref/doc/uid/TP40013929-CH35-SW5
// There are more levels but they have two other documented ones,
// QOS_CLASS_BACKGROUND, which is below UTILITY, but has no guarantees
// for scheduling (ie. the OS could choose to never give it CPU time),
// and QOS_CLASS_USER_INITIATED, documented as being intended for
// user-initiated actions, such as loading a text document.
switch (serviceLevel) {
case QThread::QualityOfService::Auto:
return QOS_CLASS_DEFAULT;
case QThread::QualityOfService::High:
return QOS_CLASS_USER_INTERACTIVE;
case QThread::QualityOfService::Eco:
return QOS_CLASS_UTILITY;
}
Q_UNREACHABLE_RETURN(QOS_CLASS_DEFAULT);
}
#endif
#endif // QT_CONFIG(thread)
QT_END_NAMESPACE