linux-kernelorg-stable/include/linux/pidfs.h

21 lines
625 B
C
Raw Normal View History

pidfd: add pidfs This moves pidfds from the anonymous inode infrastructure to a tiny pseudo filesystem. This has been on my todo for quite a while as it will unblock further work that we weren't able to do simply because of the very justified limitations of anonymous inodes. Moving pidfds to a tiny pseudo filesystem allows: * statx() on pidfds becomes useful for the first time. * pidfds can be compared simply via statx() and then comparing inode numbers. * pidfds have unique inode numbers for the system lifetime. * struct pid is now stashed in inode->i_private instead of file->private_data. This means it is now possible to introduce concepts that operate on a process once all file descriptors have been closed. A concrete example is kill-on-last-close. * file->private_data is freed up for per-file options for pidfds. * Each struct pid will refer to a different inode but the same struct pid will refer to the same inode if it's opened multiple times. In contrast to now where each struct pid refers to the same inode. Even if we were to move to anon_inode_create_getfile() which creates new inodes we'd still be associating the same struct pid with multiple different inodes. The tiny pseudo filesystem is not visible anywhere in userspace exactly like e.g., pipefs and sockfs. There's no lookup, there's no complex inode operations, nothing. Dentries and inodes are always deleted when the last pidfd is closed. We allocate a new inode for each struct pid and we reuse that inode for all pidfds. We use iget_locked() to find that inode again based on the inode number which isn't recycled. We allocate a new dentry for each pidfd that uses the same inode. That is similar to anonymous inodes which reuse the same inode for thousands of dentries. For pidfds we're talking way less than that. There usually won't be a lot of concurrent openers of the same struct pid. They can probably often be counted on two hands. I know that systemd does use separate pidfd for the same struct pid for various complex process tracking issues. So I think with that things actually become way simpler. Especially because we don't have to care about lookup. Dentries and inodes continue to be always deleted. The code is entirely optional and fairly small. If it's not selected we fallback to anonymous inodes. Heavily inspired by nsfs which uses a similar stashing mechanism just for namespaces. Link: https://lore.kernel.org/r/20240213-vfs-pidfd_fs-v1-2-f863f58cfce1@kernel.org Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-02-12 15:32:38 +00:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_PID_FS_H
#define _LINUX_PID_FS_H
struct coredump_params;
pidfd: add pidfs This moves pidfds from the anonymous inode infrastructure to a tiny pseudo filesystem. This has been on my todo for quite a while as it will unblock further work that we weren't able to do simply because of the very justified limitations of anonymous inodes. Moving pidfds to a tiny pseudo filesystem allows: * statx() on pidfds becomes useful for the first time. * pidfds can be compared simply via statx() and then comparing inode numbers. * pidfds have unique inode numbers for the system lifetime. * struct pid is now stashed in inode->i_private instead of file->private_data. This means it is now possible to introduce concepts that operate on a process once all file descriptors have been closed. A concrete example is kill-on-last-close. * file->private_data is freed up for per-file options for pidfds. * Each struct pid will refer to a different inode but the same struct pid will refer to the same inode if it's opened multiple times. In contrast to now where each struct pid refers to the same inode. Even if we were to move to anon_inode_create_getfile() which creates new inodes we'd still be associating the same struct pid with multiple different inodes. The tiny pseudo filesystem is not visible anywhere in userspace exactly like e.g., pipefs and sockfs. There's no lookup, there's no complex inode operations, nothing. Dentries and inodes are always deleted when the last pidfd is closed. We allocate a new inode for each struct pid and we reuse that inode for all pidfds. We use iget_locked() to find that inode again based on the inode number which isn't recycled. We allocate a new dentry for each pidfd that uses the same inode. That is similar to anonymous inodes which reuse the same inode for thousands of dentries. For pidfds we're talking way less than that. There usually won't be a lot of concurrent openers of the same struct pid. They can probably often be counted on two hands. I know that systemd does use separate pidfd for the same struct pid for various complex process tracking issues. So I think with that things actually become way simpler. Especially because we don't have to care about lookup. Dentries and inodes continue to be always deleted. The code is entirely optional and fairly small. If it's not selected we fallback to anonymous inodes. Heavily inspired by nsfs which uses a similar stashing mechanism just for namespaces. Link: https://lore.kernel.org/r/20240213-vfs-pidfd_fs-v1-2-f863f58cfce1@kernel.org Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-02-12 15:32:38 +00:00
struct file *pidfs_alloc_file(struct pid *pid, unsigned int flags);
void __init pidfs_init(void);
pidfs: lookup pid through rbtree The new pid inode number allocation scheme is neat but I overlooked a possible, even though unlikely, attack that can be used to trigger an overflow on both 32bit and 64bit. An unique 64 bit identifier was constructed for each struct pid by two combining a 32 bit idr with a 32 bit generation number. A 32bit number was allocated using the idr_alloc_cyclic() infrastructure. When the idr wrapped around a 32 bit wraparound counter was incremented. The 32 bit wraparound counter served as the upper 32 bits and the allocated idr number as the lower 32 bits. Since the idr can only allocate up to INT_MAX entries everytime a wraparound happens INT_MAX - 1 entries are lost (Ignoring that numbering always starts at 2 to avoid theoretical collisions with the root inode number.). If userspace fully populates the idr such that and puts itself into control of two entries such that one entry is somewhere in the middle and the other entry is the INT_MAX entry then it is possible to overflow the wraparound counter. That is probably difficult to pull off but the mere possibility is annoying. The problem could be contained to 32 bit by switching to a data structure such as the maple tree that allows allocating 64 bit numbers on 64 bit machines. That would leave 32 bit in a lurch but that probably doesn't matter that much. The other problem is that removing entries form the maple tree is somewhat non-trivial because the removal code can be called under the irq write lock of tasklist_lock and irq{save,restore} code. Instead, allocate unique identifiers for struct pid by simply incrementing a 64 bit counter and insert each struct pid into the rbtree so it can be looked up to decode file handles avoiding to leak actual pids across pid namespaces in file handles. On both 64 bit and 32 bit the same 64 bit identifier is used to lookup struct pid in the rbtree. On 64 bit the unique identifier for struct pid simply becomes the inode number. Comparing two pidfds continues to be as simple as comparing inode numbers. On 32 bit the 64 bit number assigned to struct pid is split into two 32 bit numbers. The lower 32 bits are used as the inode number and the upper 32 bits are used as the inode generation number. Whenever a wraparound happens on 32 bit the 64 bit number will be incremented by 2 so inode numbering starts at 2 again. When a wraparound happens on 32 bit multiple pidfds with the same inode number are likely to exist. This isn't a problem since before pidfs pidfds used the anonymous inode meaning all pidfds had the same inode number. On 32 bit sserspace can thus reconstruct the 64 bit identifier by retrieving both the inode number and the inode generation number to compare, or use file handles. This gives the same guarantees on both 32 bit and 64 bit. Link: https://lore.kernel.org/r/20241214-gekoppelt-erdarbeiten-a1f9a982a5a6@brauner Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-12-14 21:01:28 +00:00
void pidfs_add_pid(struct pid *pid);
pidfs: rework inode number allocation Recently we received a patchset that aims to enable file handle encoding and decoding via name_to_handle_at(2) and open_by_handle_at(2). A crucical step in the patch series is how to go from inode number to struct pid without leaking information into unprivileged contexts. The issue is that in order to find a struct pid the pid number in the initial pid namespace must be encoded into the file handle via name_to_handle_at(2). This can be used by containers using a separate pid namespace to learn what the pid number of a given process in the initial pid namespace is. While this is a weak information leak it could be used in various exploits and in general is an ugly wart in the design. To solve this problem a new way is needed to lookup a struct pid based on the inode number allocated for that struct pid. The other part is to remove the custom inode number allocation on 32bit systems that is also an ugly wart that should go away. So, a new scheme is used that I was discusssing with Tejun some time back. A cyclic ida is used for the lower 32 bits and a the high 32 bits are used for the generation number. This gives a 64 bit inode number that is unique on both 32 bit and 64 bit. The lower 32 bit number is recycled slowly and can be used to lookup struct pids. Link: https://lore.kernel.org/r/20241129-work-pidfs-v2-1-61043d66fbce@kernel.org Reviewed-by: Jeff Layton <jlayton@kernel.org> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Reviewed-by: Jan Kara <jack@suse.cz> Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-11-29 13:02:23 +00:00
void pidfs_remove_pid(struct pid *pid);
void pidfs_exit(struct task_struct *tsk);
#ifdef CONFIG_COREDUMP
void pidfs_coredump(const struct coredump_params *cprm);
#endif
extern const struct dentry_operations pidfs_dentry_operations;
int pidfs_register_pid(struct pid *pid);
void pidfs_get_pid(struct pid *pid);
void pidfs_put_pid(struct pid *pid);
pidfd: add pidfs This moves pidfds from the anonymous inode infrastructure to a tiny pseudo filesystem. This has been on my todo for quite a while as it will unblock further work that we weren't able to do simply because of the very justified limitations of anonymous inodes. Moving pidfds to a tiny pseudo filesystem allows: * statx() on pidfds becomes useful for the first time. * pidfds can be compared simply via statx() and then comparing inode numbers. * pidfds have unique inode numbers for the system lifetime. * struct pid is now stashed in inode->i_private instead of file->private_data. This means it is now possible to introduce concepts that operate on a process once all file descriptors have been closed. A concrete example is kill-on-last-close. * file->private_data is freed up for per-file options for pidfds. * Each struct pid will refer to a different inode but the same struct pid will refer to the same inode if it's opened multiple times. In contrast to now where each struct pid refers to the same inode. Even if we were to move to anon_inode_create_getfile() which creates new inodes we'd still be associating the same struct pid with multiple different inodes. The tiny pseudo filesystem is not visible anywhere in userspace exactly like e.g., pipefs and sockfs. There's no lookup, there's no complex inode operations, nothing. Dentries and inodes are always deleted when the last pidfd is closed. We allocate a new inode for each struct pid and we reuse that inode for all pidfds. We use iget_locked() to find that inode again based on the inode number which isn't recycled. We allocate a new dentry for each pidfd that uses the same inode. That is similar to anonymous inodes which reuse the same inode for thousands of dentries. For pidfds we're talking way less than that. There usually won't be a lot of concurrent openers of the same struct pid. They can probably often be counted on two hands. I know that systemd does use separate pidfd for the same struct pid for various complex process tracking issues. So I think with that things actually become way simpler. Especially because we don't have to care about lookup. Dentries and inodes continue to be always deleted. The code is entirely optional and fairly small. If it's not selected we fallback to anonymous inodes. Heavily inspired by nsfs which uses a similar stashing mechanism just for namespaces. Link: https://lore.kernel.org/r/20240213-vfs-pidfd_fs-v1-2-f863f58cfce1@kernel.org Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-02-12 15:32:38 +00:00
#endif /* _LINUX_PID_FS_H */