linux-kernelorg-stable/include/linux/local_lock_internal.h

286 lines
7.0 KiB
C
Raw Normal View History

locking: Introduce local_lock() preempt_disable() and local_irq_disable/save() are in principle per CPU big kernel locks. This has several downsides: - The protection scope is unknown - Violation of protection rules is hard to detect by instrumentation - For PREEMPT_RT such sections, unless in low level critical code, can violate the preemptability constraints. To address this PREEMPT_RT introduced the concept of local_locks which are strictly per CPU. The lock operations map to preempt_disable(), local_irq_disable/save() and the enabling counterparts on non RT enabled kernels. If lockdep is enabled local locks gain a lock map which tracks the usage context. This will catch cases where an area is protected by preempt_disable() but the access also happens from interrupt context. local locks have identified quite a few such issues over the years, the most recent example is: b7d5dc21072cd ("random: add a spinlock_t to struct batched_entropy") Aside of the lockdep coverage this also improves code readability as it precisely annotates the protection scope. PREEMPT_RT substitutes these local locks with 'sleeping' spinlocks to protect such sections while maintaining preemtability and CPU locality. local locks can replace: - preempt_enable()/disable() pairs - local_irq_disable/enable() pairs - local_irq_save/restore() pairs They are also used to replace code which implicitly disables preemption like: - get_cpu()/put_cpu() - get_cpu_var()/put_cpu_var() with PREEMPT_RT friendly constructs. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20200527201119.1692513-2-bigeasy@linutronix.de
2020-05-27 20:11:13 +00:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_LOCAL_LOCK_H
# error "Do not include directly, include linux/local_lock.h"
#endif
#include <linux/percpu-defs.h>
#include <linux/lockdep.h>
#ifndef CONFIG_PREEMPT_RT
locking: Introduce local_lock() preempt_disable() and local_irq_disable/save() are in principle per CPU big kernel locks. This has several downsides: - The protection scope is unknown - Violation of protection rules is hard to detect by instrumentation - For PREEMPT_RT such sections, unless in low level critical code, can violate the preemptability constraints. To address this PREEMPT_RT introduced the concept of local_locks which are strictly per CPU. The lock operations map to preempt_disable(), local_irq_disable/save() and the enabling counterparts on non RT enabled kernels. If lockdep is enabled local locks gain a lock map which tracks the usage context. This will catch cases where an area is protected by preempt_disable() but the access also happens from interrupt context. local locks have identified quite a few such issues over the years, the most recent example is: b7d5dc21072cd ("random: add a spinlock_t to struct batched_entropy") Aside of the lockdep coverage this also improves code readability as it precisely annotates the protection scope. PREEMPT_RT substitutes these local locks with 'sleeping' spinlocks to protect such sections while maintaining preemtability and CPU locality. local locks can replace: - preempt_enable()/disable() pairs - local_irq_disable/enable() pairs - local_irq_save/restore() pairs They are also used to replace code which implicitly disables preemption like: - get_cpu()/put_cpu() - get_cpu_var()/put_cpu_var() with PREEMPT_RT friendly constructs. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20200527201119.1692513-2-bigeasy@linutronix.de
2020-05-27 20:11:13 +00:00
typedef struct {
#ifdef CONFIG_DEBUG_LOCK_ALLOC
struct lockdep_map dep_map;
struct task_struct *owner;
#endif
} local_lock_t;
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
/* local_trylock() and local_trylock_irqsave() only work with local_trylock_t */
typedef struct {
local_lock_t llock;
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
u8 acquired;
} local_trylock_t;
locking: Introduce local_lock() preempt_disable() and local_irq_disable/save() are in principle per CPU big kernel locks. This has several downsides: - The protection scope is unknown - Violation of protection rules is hard to detect by instrumentation - For PREEMPT_RT such sections, unless in low level critical code, can violate the preemptability constraints. To address this PREEMPT_RT introduced the concept of local_locks which are strictly per CPU. The lock operations map to preempt_disable(), local_irq_disable/save() and the enabling counterparts on non RT enabled kernels. If lockdep is enabled local locks gain a lock map which tracks the usage context. This will catch cases where an area is protected by preempt_disable() but the access also happens from interrupt context. local locks have identified quite a few such issues over the years, the most recent example is: b7d5dc21072cd ("random: add a spinlock_t to struct batched_entropy") Aside of the lockdep coverage this also improves code readability as it precisely annotates the protection scope. PREEMPT_RT substitutes these local locks with 'sleeping' spinlocks to protect such sections while maintaining preemtability and CPU locality. local locks can replace: - preempt_enable()/disable() pairs - local_irq_disable/enable() pairs - local_irq_save/restore() pairs They are also used to replace code which implicitly disables preemption like: - get_cpu()/put_cpu() - get_cpu_var()/put_cpu_var() with PREEMPT_RT friendly constructs. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20200527201119.1692513-2-bigeasy@linutronix.de
2020-05-27 20:11:13 +00:00
#ifdef CONFIG_DEBUG_LOCK_ALLOC
# define LOCAL_LOCK_DEBUG_INIT(lockname) \
locking: Introduce local_lock() preempt_disable() and local_irq_disable/save() are in principle per CPU big kernel locks. This has several downsides: - The protection scope is unknown - Violation of protection rules is hard to detect by instrumentation - For PREEMPT_RT such sections, unless in low level critical code, can violate the preemptability constraints. To address this PREEMPT_RT introduced the concept of local_locks which are strictly per CPU. The lock operations map to preempt_disable(), local_irq_disable/save() and the enabling counterparts on non RT enabled kernels. If lockdep is enabled local locks gain a lock map which tracks the usage context. This will catch cases where an area is protected by preempt_disable() but the access also happens from interrupt context. local locks have identified quite a few such issues over the years, the most recent example is: b7d5dc21072cd ("random: add a spinlock_t to struct batched_entropy") Aside of the lockdep coverage this also improves code readability as it precisely annotates the protection scope. PREEMPT_RT substitutes these local locks with 'sleeping' spinlocks to protect such sections while maintaining preemtability and CPU locality. local locks can replace: - preempt_enable()/disable() pairs - local_irq_disable/enable() pairs - local_irq_save/restore() pairs They are also used to replace code which implicitly disables preemption like: - get_cpu()/put_cpu() - get_cpu_var()/put_cpu_var() with PREEMPT_RT friendly constructs. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20200527201119.1692513-2-bigeasy@linutronix.de
2020-05-27 20:11:13 +00:00
.dep_map = { \
.name = #lockname, \
.wait_type_inner = LD_WAIT_CONFIG, \
.lock_type = LD_LOCK_PERCPU, \
}, \
.owner = NULL,
locking: Introduce local_lock() preempt_disable() and local_irq_disable/save() are in principle per CPU big kernel locks. This has several downsides: - The protection scope is unknown - Violation of protection rules is hard to detect by instrumentation - For PREEMPT_RT such sections, unless in low level critical code, can violate the preemptability constraints. To address this PREEMPT_RT introduced the concept of local_locks which are strictly per CPU. The lock operations map to preempt_disable(), local_irq_disable/save() and the enabling counterparts on non RT enabled kernels. If lockdep is enabled local locks gain a lock map which tracks the usage context. This will catch cases where an area is protected by preempt_disable() but the access also happens from interrupt context. local locks have identified quite a few such issues over the years, the most recent example is: b7d5dc21072cd ("random: add a spinlock_t to struct batched_entropy") Aside of the lockdep coverage this also improves code readability as it precisely annotates the protection scope. PREEMPT_RT substitutes these local locks with 'sleeping' spinlocks to protect such sections while maintaining preemtability and CPU locality. local locks can replace: - preempt_enable()/disable() pairs - local_irq_disable/enable() pairs - local_irq_save/restore() pairs They are also used to replace code which implicitly disables preemption like: - get_cpu()/put_cpu() - get_cpu_var()/put_cpu_var() with PREEMPT_RT friendly constructs. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20200527201119.1692513-2-bigeasy@linutronix.de
2020-05-27 20:11:13 +00:00
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
# define LOCAL_TRYLOCK_DEBUG_INIT(lockname) \
.llock = { LOCAL_LOCK_DEBUG_INIT((lockname).llock) },
locking: Introduce local_lock() preempt_disable() and local_irq_disable/save() are in principle per CPU big kernel locks. This has several downsides: - The protection scope is unknown - Violation of protection rules is hard to detect by instrumentation - For PREEMPT_RT such sections, unless in low level critical code, can violate the preemptability constraints. To address this PREEMPT_RT introduced the concept of local_locks which are strictly per CPU. The lock operations map to preempt_disable(), local_irq_disable/save() and the enabling counterparts on non RT enabled kernels. If lockdep is enabled local locks gain a lock map which tracks the usage context. This will catch cases where an area is protected by preempt_disable() but the access also happens from interrupt context. local locks have identified quite a few such issues over the years, the most recent example is: b7d5dc21072cd ("random: add a spinlock_t to struct batched_entropy") Aside of the lockdep coverage this also improves code readability as it precisely annotates the protection scope. PREEMPT_RT substitutes these local locks with 'sleeping' spinlocks to protect such sections while maintaining preemtability and CPU locality. local locks can replace: - preempt_enable()/disable() pairs - local_irq_disable/enable() pairs - local_irq_save/restore() pairs They are also used to replace code which implicitly disables preemption like: - get_cpu()/put_cpu() - get_cpu_var()/put_cpu_var() with PREEMPT_RT friendly constructs. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20200527201119.1692513-2-bigeasy@linutronix.de
2020-05-27 20:11:13 +00:00
static inline void local_lock_acquire(local_lock_t *l)
{
lock_map_acquire(&l->dep_map);
DEBUG_LOCKS_WARN_ON(l->owner);
l->owner = current;
}
static inline void local_trylock_acquire(local_lock_t *l)
{
lock_map_acquire_try(&l->dep_map);
DEBUG_LOCKS_WARN_ON(l->owner);
l->owner = current;
}
locking: Introduce local_lock() preempt_disable() and local_irq_disable/save() are in principle per CPU big kernel locks. This has several downsides: - The protection scope is unknown - Violation of protection rules is hard to detect by instrumentation - For PREEMPT_RT such sections, unless in low level critical code, can violate the preemptability constraints. To address this PREEMPT_RT introduced the concept of local_locks which are strictly per CPU. The lock operations map to preempt_disable(), local_irq_disable/save() and the enabling counterparts on non RT enabled kernels. If lockdep is enabled local locks gain a lock map which tracks the usage context. This will catch cases where an area is protected by preempt_disable() but the access also happens from interrupt context. local locks have identified quite a few such issues over the years, the most recent example is: b7d5dc21072cd ("random: add a spinlock_t to struct batched_entropy") Aside of the lockdep coverage this also improves code readability as it precisely annotates the protection scope. PREEMPT_RT substitutes these local locks with 'sleeping' spinlocks to protect such sections while maintaining preemtability and CPU locality. local locks can replace: - preempt_enable()/disable() pairs - local_irq_disable/enable() pairs - local_irq_save/restore() pairs They are also used to replace code which implicitly disables preemption like: - get_cpu()/put_cpu() - get_cpu_var()/put_cpu_var() with PREEMPT_RT friendly constructs. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20200527201119.1692513-2-bigeasy@linutronix.de
2020-05-27 20:11:13 +00:00
static inline void local_lock_release(local_lock_t *l)
{
DEBUG_LOCKS_WARN_ON(l->owner != current);
l->owner = NULL;
lock_map_release(&l->dep_map);
}
static inline void local_lock_debug_init(local_lock_t *l)
{
l->owner = NULL;
}
locking: Introduce local_lock() preempt_disable() and local_irq_disable/save() are in principle per CPU big kernel locks. This has several downsides: - The protection scope is unknown - Violation of protection rules is hard to detect by instrumentation - For PREEMPT_RT such sections, unless in low level critical code, can violate the preemptability constraints. To address this PREEMPT_RT introduced the concept of local_locks which are strictly per CPU. The lock operations map to preempt_disable(), local_irq_disable/save() and the enabling counterparts on non RT enabled kernels. If lockdep is enabled local locks gain a lock map which tracks the usage context. This will catch cases where an area is protected by preempt_disable() but the access also happens from interrupt context. local locks have identified quite a few such issues over the years, the most recent example is: b7d5dc21072cd ("random: add a spinlock_t to struct batched_entropy") Aside of the lockdep coverage this also improves code readability as it precisely annotates the protection scope. PREEMPT_RT substitutes these local locks with 'sleeping' spinlocks to protect such sections while maintaining preemtability and CPU locality. local locks can replace: - preempt_enable()/disable() pairs - local_irq_disable/enable() pairs - local_irq_save/restore() pairs They are also used to replace code which implicitly disables preemption like: - get_cpu()/put_cpu() - get_cpu_var()/put_cpu_var() with PREEMPT_RT friendly constructs. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20200527201119.1692513-2-bigeasy@linutronix.de
2020-05-27 20:11:13 +00:00
#else /* CONFIG_DEBUG_LOCK_ALLOC */
# define LOCAL_LOCK_DEBUG_INIT(lockname)
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
# define LOCAL_TRYLOCK_DEBUG_INIT(lockname)
static inline void local_lock_acquire(local_lock_t *l) { }
static inline void local_trylock_acquire(local_lock_t *l) { }
static inline void local_lock_release(local_lock_t *l) { }
static inline void local_lock_debug_init(local_lock_t *l) { }
locking: Introduce local_lock() preempt_disable() and local_irq_disable/save() are in principle per CPU big kernel locks. This has several downsides: - The protection scope is unknown - Violation of protection rules is hard to detect by instrumentation - For PREEMPT_RT such sections, unless in low level critical code, can violate the preemptability constraints. To address this PREEMPT_RT introduced the concept of local_locks which are strictly per CPU. The lock operations map to preempt_disable(), local_irq_disable/save() and the enabling counterparts on non RT enabled kernels. If lockdep is enabled local locks gain a lock map which tracks the usage context. This will catch cases where an area is protected by preempt_disable() but the access also happens from interrupt context. local locks have identified quite a few such issues over the years, the most recent example is: b7d5dc21072cd ("random: add a spinlock_t to struct batched_entropy") Aside of the lockdep coverage this also improves code readability as it precisely annotates the protection scope. PREEMPT_RT substitutes these local locks with 'sleeping' spinlocks to protect such sections while maintaining preemtability and CPU locality. local locks can replace: - preempt_enable()/disable() pairs - local_irq_disable/enable() pairs - local_irq_save/restore() pairs They are also used to replace code which implicitly disables preemption like: - get_cpu()/put_cpu() - get_cpu_var()/put_cpu_var() with PREEMPT_RT friendly constructs. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20200527201119.1692513-2-bigeasy@linutronix.de
2020-05-27 20:11:13 +00:00
#endif /* !CONFIG_DEBUG_LOCK_ALLOC */
#define INIT_LOCAL_LOCK(lockname) { LOCAL_LOCK_DEBUG_INIT(lockname) }
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
#define INIT_LOCAL_TRYLOCK(lockname) { LOCAL_TRYLOCK_DEBUG_INIT(lockname) }
#define __local_lock_init(lock) \
do { \
static struct lock_class_key __key; \
\
debug_check_no_locks_freed((void *)lock, sizeof(*lock));\
lockdep_init_map_type(&(lock)->dep_map, #lock, &__key, \
0, LD_WAIT_CONFIG, LD_WAIT_INV, \
LD_LOCK_PERCPU); \
local_lock_debug_init(lock); \
} while (0)
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
#define __local_trylock_init(lock) __local_lock_init(lock.llock)
#define __spinlock_nested_bh_init(lock) \
do { \
static struct lock_class_key __key; \
\
debug_check_no_locks_freed((void *)lock, sizeof(*lock));\
lockdep_init_map_type(&(lock)->dep_map, #lock, &__key, \
0, LD_WAIT_CONFIG, LD_WAIT_INV, \
LD_LOCK_NORMAL); \
local_lock_debug_init(lock); \
} while (0)
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
#define __local_lock_acquire(lock) \
do { \
local_trylock_t *tl; \
local_lock_t *l; \
\
l = (local_lock_t *)this_cpu_ptr(lock); \
tl = (local_trylock_t *)l; \
_Generic((lock), \
locking/local_lock: fix _Generic() matching of local_trylock_t Michael Larabel reported [1] a nginx performance regression in v6.15-rc3 and bisected it to commit 51339d99c013 ("locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type") The problem is the _Generic() usage with a default association that masks the fact that "local_trylock_t *" association is not being selected as expected. Replacing the default with the only other expected type "local_lock_t *" reveals the underlying problem: include/linux/local_lock_internal.h:174:26: error: ‘_Generic’ selector of type ‘__seg_gs local_lock_t *’ is not compatible with any association The local_locki's are part of __percpu structures and thus the __percpu attribute is needed to associate the type properly. Add the attribute and keep the default replaced to turn any further mismatches into compile errors. The failure to recognize local_try_lock_t in __local_lock_release() means that a local_trylock[_irqsave]() operation will set tl->acquired to 1 (there's no _Generic() part in the trylock code), but then local_unlock[_irqrestore]() will not set tl->acquired back to 0, so further trylock operations will always fail on the same cpu+lock, while non-trylock operations continue to work - a lockdep_assert() is also not being executed in the _Generic() part of local_lock() code. This means consume_stock() and refill_stock() operations will fail deterministically, resulting in taking the slow paths and worse performance. Fixes: 51339d99c013 ("locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type") Reported-by: Michael Larabel <Michael@phoronix.com> Closes: https://www.phoronix.com/review/linux-615-nginx-regression/2 [1] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2025-04-23 08:21:29 +00:00
__percpu local_trylock_t *: ({ \
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
lockdep_assert(tl->acquired == 0); \
WRITE_ONCE(tl->acquired, 1); \
}), \
locking/local_lock: fix _Generic() matching of local_trylock_t Michael Larabel reported [1] a nginx performance regression in v6.15-rc3 and bisected it to commit 51339d99c013 ("locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type") The problem is the _Generic() usage with a default association that masks the fact that "local_trylock_t *" association is not being selected as expected. Replacing the default with the only other expected type "local_lock_t *" reveals the underlying problem: include/linux/local_lock_internal.h:174:26: error: ‘_Generic’ selector of type ‘__seg_gs local_lock_t *’ is not compatible with any association The local_locki's are part of __percpu structures and thus the __percpu attribute is needed to associate the type properly. Add the attribute and keep the default replaced to turn any further mismatches into compile errors. The failure to recognize local_try_lock_t in __local_lock_release() means that a local_trylock[_irqsave]() operation will set tl->acquired to 1 (there's no _Generic() part in the trylock code), but then local_unlock[_irqrestore]() will not set tl->acquired back to 0, so further trylock operations will always fail on the same cpu+lock, while non-trylock operations continue to work - a lockdep_assert() is also not being executed in the _Generic() part of local_lock() code. This means consume_stock() and refill_stock() operations will fail deterministically, resulting in taking the slow paths and worse performance. Fixes: 51339d99c013 ("locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type") Reported-by: Michael Larabel <Michael@phoronix.com> Closes: https://www.phoronix.com/review/linux-615-nginx-regression/2 [1] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2025-04-23 08:21:29 +00:00
__percpu local_lock_t *: (void)0); \
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
local_lock_acquire(l); \
} while (0)
locking: Introduce local_lock() preempt_disable() and local_irq_disable/save() are in principle per CPU big kernel locks. This has several downsides: - The protection scope is unknown - Violation of protection rules is hard to detect by instrumentation - For PREEMPT_RT such sections, unless in low level critical code, can violate the preemptability constraints. To address this PREEMPT_RT introduced the concept of local_locks which are strictly per CPU. The lock operations map to preempt_disable(), local_irq_disable/save() and the enabling counterparts on non RT enabled kernels. If lockdep is enabled local locks gain a lock map which tracks the usage context. This will catch cases where an area is protected by preempt_disable() but the access also happens from interrupt context. local locks have identified quite a few such issues over the years, the most recent example is: b7d5dc21072cd ("random: add a spinlock_t to struct batched_entropy") Aside of the lockdep coverage this also improves code readability as it precisely annotates the protection scope. PREEMPT_RT substitutes these local locks with 'sleeping' spinlocks to protect such sections while maintaining preemtability and CPU locality. local locks can replace: - preempt_enable()/disable() pairs - local_irq_disable/enable() pairs - local_irq_save/restore() pairs They are also used to replace code which implicitly disables preemption like: - get_cpu()/put_cpu() - get_cpu_var()/put_cpu_var() with PREEMPT_RT friendly constructs. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20200527201119.1692513-2-bigeasy@linutronix.de
2020-05-27 20:11:13 +00:00
#define __local_lock(lock) \
do { \
preempt_disable(); \
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
__local_lock_acquire(lock); \
locking: Introduce local_lock() preempt_disable() and local_irq_disable/save() are in principle per CPU big kernel locks. This has several downsides: - The protection scope is unknown - Violation of protection rules is hard to detect by instrumentation - For PREEMPT_RT such sections, unless in low level critical code, can violate the preemptability constraints. To address this PREEMPT_RT introduced the concept of local_locks which are strictly per CPU. The lock operations map to preempt_disable(), local_irq_disable/save() and the enabling counterparts on non RT enabled kernels. If lockdep is enabled local locks gain a lock map which tracks the usage context. This will catch cases where an area is protected by preempt_disable() but the access also happens from interrupt context. local locks have identified quite a few such issues over the years, the most recent example is: b7d5dc21072cd ("random: add a spinlock_t to struct batched_entropy") Aside of the lockdep coverage this also improves code readability as it precisely annotates the protection scope. PREEMPT_RT substitutes these local locks with 'sleeping' spinlocks to protect such sections while maintaining preemtability and CPU locality. local locks can replace: - preempt_enable()/disable() pairs - local_irq_disable/enable() pairs - local_irq_save/restore() pairs They are also used to replace code which implicitly disables preemption like: - get_cpu()/put_cpu() - get_cpu_var()/put_cpu_var() with PREEMPT_RT friendly constructs. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20200527201119.1692513-2-bigeasy@linutronix.de
2020-05-27 20:11:13 +00:00
} while (0)
#define __local_lock_irq(lock) \
do { \
local_irq_disable(); \
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
__local_lock_acquire(lock); \
locking: Introduce local_lock() preempt_disable() and local_irq_disable/save() are in principle per CPU big kernel locks. This has several downsides: - The protection scope is unknown - Violation of protection rules is hard to detect by instrumentation - For PREEMPT_RT such sections, unless in low level critical code, can violate the preemptability constraints. To address this PREEMPT_RT introduced the concept of local_locks which are strictly per CPU. The lock operations map to preempt_disable(), local_irq_disable/save() and the enabling counterparts on non RT enabled kernels. If lockdep is enabled local locks gain a lock map which tracks the usage context. This will catch cases where an area is protected by preempt_disable() but the access also happens from interrupt context. local locks have identified quite a few such issues over the years, the most recent example is: b7d5dc21072cd ("random: add a spinlock_t to struct batched_entropy") Aside of the lockdep coverage this also improves code readability as it precisely annotates the protection scope. PREEMPT_RT substitutes these local locks with 'sleeping' spinlocks to protect such sections while maintaining preemtability and CPU locality. local locks can replace: - preempt_enable()/disable() pairs - local_irq_disable/enable() pairs - local_irq_save/restore() pairs They are also used to replace code which implicitly disables preemption like: - get_cpu()/put_cpu() - get_cpu_var()/put_cpu_var() with PREEMPT_RT friendly constructs. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20200527201119.1692513-2-bigeasy@linutronix.de
2020-05-27 20:11:13 +00:00
} while (0)
#define __local_lock_irqsave(lock, flags) \
do { \
local_irq_save(flags); \
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
__local_lock_acquire(lock); \
locking: Introduce local_lock() preempt_disable() and local_irq_disable/save() are in principle per CPU big kernel locks. This has several downsides: - The protection scope is unknown - Violation of protection rules is hard to detect by instrumentation - For PREEMPT_RT such sections, unless in low level critical code, can violate the preemptability constraints. To address this PREEMPT_RT introduced the concept of local_locks which are strictly per CPU. The lock operations map to preempt_disable(), local_irq_disable/save() and the enabling counterparts on non RT enabled kernels. If lockdep is enabled local locks gain a lock map which tracks the usage context. This will catch cases where an area is protected by preempt_disable() but the access also happens from interrupt context. local locks have identified quite a few such issues over the years, the most recent example is: b7d5dc21072cd ("random: add a spinlock_t to struct batched_entropy") Aside of the lockdep coverage this also improves code readability as it precisely annotates the protection scope. PREEMPT_RT substitutes these local locks with 'sleeping' spinlocks to protect such sections while maintaining preemtability and CPU locality. local locks can replace: - preempt_enable()/disable() pairs - local_irq_disable/enable() pairs - local_irq_save/restore() pairs They are also used to replace code which implicitly disables preemption like: - get_cpu()/put_cpu() - get_cpu_var()/put_cpu_var() with PREEMPT_RT friendly constructs. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20200527201119.1692513-2-bigeasy@linutronix.de
2020-05-27 20:11:13 +00:00
} while (0)
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
#define __local_trylock(lock) \
({ \
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
local_trylock_t *tl; \
\
preempt_disable(); \
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
tl = this_cpu_ptr(lock); \
if (READ_ONCE(tl->acquired)) { \
preempt_enable(); \
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
tl = NULL; \
} else { \
WRITE_ONCE(tl->acquired, 1); \
local_trylock_acquire( \
(local_lock_t *)tl); \
} \
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
!!tl; \
})
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
#define __local_trylock_irqsave(lock, flags) \
({ \
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
local_trylock_t *tl; \
\
local_irq_save(flags); \
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
tl = this_cpu_ptr(lock); \
if (READ_ONCE(tl->acquired)) { \
local_irq_restore(flags); \
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
tl = NULL; \
} else { \
WRITE_ONCE(tl->acquired, 1); \
local_trylock_acquire( \
(local_lock_t *)tl); \
} \
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
!!tl; \
})
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
#define __local_lock_release(lock) \
do { \
local_trylock_t *tl; \
local_lock_t *l; \
\
l = (local_lock_t *)this_cpu_ptr(lock); \
tl = (local_trylock_t *)l; \
local_lock_release(l); \
_Generic((lock), \
locking/local_lock: fix _Generic() matching of local_trylock_t Michael Larabel reported [1] a nginx performance regression in v6.15-rc3 and bisected it to commit 51339d99c013 ("locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type") The problem is the _Generic() usage with a default association that masks the fact that "local_trylock_t *" association is not being selected as expected. Replacing the default with the only other expected type "local_lock_t *" reveals the underlying problem: include/linux/local_lock_internal.h:174:26: error: ‘_Generic’ selector of type ‘__seg_gs local_lock_t *’ is not compatible with any association The local_locki's are part of __percpu structures and thus the __percpu attribute is needed to associate the type properly. Add the attribute and keep the default replaced to turn any further mismatches into compile errors. The failure to recognize local_try_lock_t in __local_lock_release() means that a local_trylock[_irqsave]() operation will set tl->acquired to 1 (there's no _Generic() part in the trylock code), but then local_unlock[_irqrestore]() will not set tl->acquired back to 0, so further trylock operations will always fail on the same cpu+lock, while non-trylock operations continue to work - a lockdep_assert() is also not being executed in the _Generic() part of local_lock() code. This means consume_stock() and refill_stock() operations will fail deterministically, resulting in taking the slow paths and worse performance. Fixes: 51339d99c013 ("locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type") Reported-by: Michael Larabel <Michael@phoronix.com> Closes: https://www.phoronix.com/review/linux-615-nginx-regression/2 [1] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2025-04-23 08:21:29 +00:00
__percpu local_trylock_t *: ({ \
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
lockdep_assert(tl->acquired == 1); \
WRITE_ONCE(tl->acquired, 0); \
}), \
locking/local_lock: fix _Generic() matching of local_trylock_t Michael Larabel reported [1] a nginx performance regression in v6.15-rc3 and bisected it to commit 51339d99c013 ("locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type") The problem is the _Generic() usage with a default association that masks the fact that "local_trylock_t *" association is not being selected as expected. Replacing the default with the only other expected type "local_lock_t *" reveals the underlying problem: include/linux/local_lock_internal.h:174:26: error: ‘_Generic’ selector of type ‘__seg_gs local_lock_t *’ is not compatible with any association The local_locki's are part of __percpu structures and thus the __percpu attribute is needed to associate the type properly. Add the attribute and keep the default replaced to turn any further mismatches into compile errors. The failure to recognize local_try_lock_t in __local_lock_release() means that a local_trylock[_irqsave]() operation will set tl->acquired to 1 (there's no _Generic() part in the trylock code), but then local_unlock[_irqrestore]() will not set tl->acquired back to 0, so further trylock operations will always fail on the same cpu+lock, while non-trylock operations continue to work - a lockdep_assert() is also not being executed in the _Generic() part of local_lock() code. This means consume_stock() and refill_stock() operations will fail deterministically, resulting in taking the slow paths and worse performance. Fixes: 51339d99c013 ("locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type") Reported-by: Michael Larabel <Michael@phoronix.com> Closes: https://www.phoronix.com/review/linux-615-nginx-regression/2 [1] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2025-04-23 08:21:29 +00:00
__percpu local_lock_t *: (void)0); \
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
} while (0)
#define __local_unlock(lock) \
do { \
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
__local_lock_release(lock); \
preempt_enable(); \
} while (0)
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
#define __local_unlock_irq(lock) \
do { \
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
__local_lock_release(lock); \
local_irq_enable(); \
} while (0)
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
#define __local_unlock_irqrestore(lock, flags) \
do { \
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
__local_lock_release(lock); \
local_irq_restore(flags); \
} while (0)
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
#define __local_lock_nested_bh(lock) \
do { \
lockdep_assert_in_softirq(); \
local_lock_acquire(this_cpu_ptr(lock)); \
} while (0)
#define __local_unlock_nested_bh(lock) \
local_lock_release(this_cpu_ptr(lock))
#else /* !CONFIG_PREEMPT_RT */
/*
* On PREEMPT_RT local_lock maps to a per CPU spinlock, which protects the
* critical section while staying preemptible.
*/
typedef spinlock_t local_lock_t;
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
typedef spinlock_t local_trylock_t;
#define INIT_LOCAL_LOCK(lockname) __LOCAL_SPIN_LOCK_UNLOCKED((lockname))
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
#define INIT_LOCAL_TRYLOCK(lockname) __LOCAL_SPIN_LOCK_UNLOCKED((lockname))
#define __local_lock_init(l) \
do { \
local_spin_lock_init((l)); \
} while (0)
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
#define __local_trylock_init(l) __local_lock_init(l)
#define __local_lock(__lock) \
do { \
migrate_disable(); \
spin_lock(this_cpu_ptr((__lock))); \
} while (0)
#define __local_lock_irq(lock) __local_lock(lock)
#define __local_lock_irqsave(lock, flags) \
do { \
typecheck(unsigned long, flags); \
flags = 0; \
__local_lock(lock); \
} while (0)
#define __local_unlock(__lock) \
do { \
spin_unlock(this_cpu_ptr((__lock))); \
migrate_enable(); \
} while (0)
#define __local_unlock_irq(lock) __local_unlock(lock)
#define __local_unlock_irqrestore(lock, flags) __local_unlock(lock)
#define __local_lock_nested_bh(lock) \
do { \
lockdep_assert_in_softirq_func(); \
spin_lock(this_cpu_ptr(lock)); \
} while (0)
#define __local_unlock_nested_bh(lock) \
do { \
spin_unlock(this_cpu_ptr((lock))); \
} while (0)
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
#define __local_trylock(lock) \
({ \
int __locked; \
\
if (in_nmi() | in_hardirq()) { \
__locked = 0; \
} else { \
migrate_disable(); \
__locked = spin_trylock(this_cpu_ptr((lock))); \
if (!__locked) \
migrate_enable(); \
} \
__locked; \
})
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
#define __local_trylock_irqsave(lock, flags) \
({ \
typecheck(unsigned long, flags); \
flags = 0; \
locking/local_lock, mm: replace localtry_ helpers with local_trylock_t type Partially revert commit 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t"). Remove localtry_*() helpers, since localtry_lock() name might be misinterpreted as "try lock". Introduce local_trylock[_irqsave]() helpers that only work with newly introduced local_trylock_t type. Note that attempt to use local_trylock[_irqsave]() with local_lock_t will cause compilation failure. Usage and behavior in !PREEMPT_RT: local_lock_t lock; // sizeof(lock) == 0 local_lock(&lock); // preempt disable local_lock_irqsave(&lock, ...); // irq save if (local_trylock_irqsave(&lock, ...)) // compilation error local_trylock_t lock; // sizeof(lock) == 4 local_lock(&lock); // preempt disable, acquired = 1 local_lock_irqsave(&lock, ...); // irq save, acquired = 1 if (local_trylock(&lock)) // if (!acquired) preempt disable, acquired = 1 if (local_trylock_irqsave(&lock, ...)) // if (!acquired) irq save, acquired = 1 The existing local_lock_*() macros can be used either with local_lock_t or local_trylock_t. With local_trylock_t they set acquired = 1 while local_unlock_*() clears it. In !PREEMPT_RT local_lock_irqsave(local_lock_t *) disables interrupts to protect critical section, but it doesn't prevent NMI, so the fully reentrant code cannot use local_lock_irqsave(local_lock_t *) for exclusive access. The local_lock_irqsave(local_trylock_t *) helper disables interrupts and sets acquired=1, so local_trylock_irqsave(local_trylock_t *) from NMI attempting to acquire the same lock will return false. In PREEMPT_RT local_lock_irqsave() maps to preemptible spin_lock(). Map local_trylock_irqsave() to preemptible spin_trylock(). When in hard IRQ or NMI return false right away, since spin_trylock() is not safe due to explicit locking in the underneath rt_spin_trylock() implementation. Removing this explicit locking and attempting only "trylock" is undesired due to PI implications. The local_trylock() without _irqsave can be used to avoid the cost of disabling/enabling interrupts by only disabling preemption, so local_trylock() in an interrupt attempting to acquire the same lock will return false. Note there is no need to use local_inc for acquired variable, since it's a percpu variable with strict nesting scopes. Note that guard(local_lock)(&lock) works only for "local_lock_t lock". The patch also makes sure that local_lock_release(l) is called before WRITE_ONCE(l->acquired, 0). Though IRQs are disabled at this point the local_trylock() from NMI will succeed and local_lock_acquire(l) will warn. Link: https://lkml.kernel.org/r/20250403025514.41186-1-alexei.starovoitov@gmail.com Fixes: 0aaddfb06882 ("locking/local_lock: Introduce localtry_lock_t") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Linus Torvalds <torvalds@linuxfoundation.org> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03 02:55:14 +00:00
__local_trylock(lock); \
})
#endif /* CONFIG_PREEMPT_RT */