mirror of git://sourceware.org/git/glibc.git
C23 makes various standard library functions, that return a pointer into an input array, into macros that return a pointer to const when the relevant argument passed to the macro is a pointer to const. (The requirement is for macros, with the existing function types applying when macro expansion is suppressed. When a null pointer constant is passed, such as integer 0, that's the same as a pointer to non-const.) Implement this feature. This only applies to C, not C++, since such macros are not an appropriate way of doing this for C++ and all the affected functions other than bsearch have overloads to implement an equivalent feature for C++ anyway. Nothing is done to apply such a change to any non-C23 functions with the same property of returning a pointer into an input array. The feature is also disabled when _LIBC is defined, since there are various places in glibc that either redefine these identifiers as macros, or define the functions themselves, and would need changing to work in the presence of these macro definitions. A natural question is whether we should in fact change those places and not disable the macro definitions for _LIBC. If so, we'd need a solution for the places in glibc that define the macro *before* including the relevant header (in order in effect to disable the header declaration of the function by renaming that declaration). One testcase has #undef added to avoid conflicting with this feature and another has const added; -Wno-discarded-qualifiers is added for building zic (but could be removed once there's a new upstream tzcode release that's const-safe with this C23 change and glibc has updated to code from that new release). Probably other places in glibc proper would need const added if we remove the _LIBC conditionals. Another question would be whether some GCC extension should be added to support this feature better with macros that only expand each argument once (as well as reducing duplication of diagnostics for bad usages such as non-pointer and pointer-to-volatile-qualfied arguments). Tested for x86_64. |
||
|---|---|---|
| .. | ||
| examples | ||
| Makefile | ||
| README.pretty-printers | ||
| README.tunables | ||
| argp.texi | ||
| arith.texi | ||
| charset.texi | ||
| check-deftype.sh | ||
| check-safety.sh | ||
| conf.texi | ||
| contrib.texi | ||
| creature.texi | ||
| crypt.texi | ||
| ctype.texi | ||
| debug.texi | ||
| dir | ||
| dynlink.texi | ||
| errno.texi | ||
| fdl-1.3.texi | ||
| filesys.texi | ||
| freemanuals.texi | ||
| getopt.texi | ||
| header.texi | ||
| install-plain.texi | ||
| install.texi | ||
| intro.texi | ||
| io.texi | ||
| ipc.texi | ||
| job.texi | ||
| lang.texi | ||
| lgpl-2.1.texi | ||
| libc-texinfo.sh | ||
| libc.texinfo | ||
| libcbook.texi | ||
| llio.texi | ||
| locale.texi | ||
| macros.texi | ||
| maint.texi | ||
| math.texi | ||
| memory.texi | ||
| message.texi | ||
| nss.texi | ||
| nsswitch.texi | ||
| pattern.texi | ||
| pipe.texi | ||
| platform.texi | ||
| probes.texi | ||
| process.texi | ||
| resource.texi | ||
| search.texi | ||
| setjmp.texi | ||
| signal.texi | ||
| socket.texi | ||
| startup.texi | ||
| stdbit.texi | ||
| stdio-fp.c | ||
| stdio.texi | ||
| string.texi | ||
| summary.pl | ||
| sysinfo.texi | ||
| syslog.texi | ||
| terminal.texi | ||
| texinfo.tex | ||
| texis.awk | ||
| threads.texi | ||
| time.texi | ||
| tsort.awk | ||
| tunables.texi | ||
| users.texi | ||
| xtract-typefun.awk | ||
README.tunables
TUNABLE FRAMEWORK
=================
Tunables is a feature in the GNU C Library that allows application authors and
distribution maintainers to alter the runtime library behaviour to match their
workload.
The tunable framework allows modules within glibc to register variables that
may be tweaked through an environment variable. It aims to enforce a strict
namespace rule to bring consistency to naming of these tunable environment
variables across the project. This document is a guide for glibc developers to
add tunables to the framework.
ADDING A NEW TUNABLE
--------------------
The TOP_NAMESPACE macro is defined by default as 'glibc'. If distributions
intend to add their own tunables, they should do so in a different top
namespace by overriding the TOP_NAMESPACE macro for that tunable. Downstream
implementations are discouraged from using the 'glibc' top namespace for
tunables they don't already have consensus to push upstream.
There are three steps to adding a tunable:
1. Add a tunable to the list and fully specify its properties:
For each tunable you want to add, make an entry in elf/dl-tunables.list. The
format of the file is as follows:
TOP_NAMESPACE {
NAMESPACE1 {
TUNABLE1 {
# tunable attributes, one per line
}
# A tunable with default attributes, i.e. string variable.
TUNABLE2
TUNABLE3 {
# its attributes
}
}
NAMESPACE2 {
...
}
}
The list of allowed attributes are:
- type: Data type. Defaults to STRING. Allowed types are:
INT_32, UINT_64, SIZE_T and STRING. Numeric types may
be in octal or hexadecimal format too.
- minval: Optional minimum acceptable value. For a string type
this is the minimum length of the value.
- maxval: Optional maximum acceptable value. For a string type
this is the maximum length of the value.
- default: Specify an optional default value for the tunable.
- env_alias: An alias environment variable
2. Use TUNABLE_GET/TUNABLE_SET/TUNABLE_SET_WITH_BOUNDS to get and set tunables.
3. OPTIONAL: If tunables in a namespace are being used multiple times within a
specific module, set the TUNABLE_NAMESPACE macro to reduce the amount of
typing.
GETTING AND SETTING TUNABLES
----------------------------
When the TUNABLE_NAMESPACE macro is defined, one may get tunables in that
module using the TUNABLE_GET macro as follows:
val = TUNABLE_GET (check, int32_t, TUNABLE_CALLBACK (check_callback))
where 'check' is the tunable name, 'int32_t' is the C type of the tunable and
'check_callback' is the function to call if the tunable got initialized to a
non-default value. The macro returns the value as type 'int32_t'.
The callback function should be defined as follows:
void
TUNABLE_CALLBACK (check_callback) (int32_t *valp)
{
...
}
where it can expect the tunable value to be passed in VALP.
Tunables in the module can be updated using:
TUNABLE_SET (check, val)
where 'check' is the tunable name and 'val' is a value of same type.
To get and set tunables in a different namespace from that module, use the full
form of the macros as follows:
val = TUNABLE_GET_FULL (glibc, malloc, mmap_max, int32_t, NULL)
TUNABLE_SET_FULL (glibc, malloc, mmap_max, val)
where 'glibc' is the top namespace, 'malloc' is the tunable namespace and the
remaining arguments are the same as the short form macros.
The minimum and maximum values can updated together with the tunable value
using:
TUNABLE_SET_WITH_BOUNDS (check, val, min, max)
where 'check' is the tunable name, 'val' is a value of same type, 'min' and
'max' are the minimum and maximum values of the tunable.
To set the minimum and maximum values of tunables in a different namespace
from that module, use the full form of the macros as follows:
val = TUNABLE_GET_FULL (glibc, malloc, mmap_max, int32_t, NULL)
TUNABLE_SET_WITH_BOUNDS_FULL (glibc, malloc, mmap_max, val, min, max)
where 'glibc' is the top namespace, 'malloc' is the tunable namespace and the
remaining arguments are the same as the short form macros.
When TUNABLE_NAMESPACE is not defined in a module, TUNABLE_GET is equivalent to
TUNABLE_GET_FULL, so you will need to provide full namespace information for
both macros. Likewise for TUNABLE_SET, TUNABLE_SET_FULL,
TUNABLE_SET_WITH_BOUNDS and TUNABLE_SET_WITH_BOUNDS_FULL.
** IMPORTANT NOTE **
The tunable list is set as read-only after the dynamic linker relocates itself,
so setting tunable values must be limited only to tunables within the dynamic
linker, that too before relocation.
FUTURE WORK
-----------
The framework currently only allows a one-time initialization of variables
through environment variables and in some cases, modification of variables via
an API call. A future goals for this project include:
- Setting system-wide and user-wide defaults for tunables through some
mechanism like a configuration file.
- Allow tweaking of some tunables at runtime