mirror of git://sourceware.org/git/glibc.git
				
				
				
			
		
			
				
	
	
		
			1041 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1041 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
| /* Floating point output for `printf'.
 | ||
|    Copyright (C) 1995, 1996, 1997 Free Software Foundation, Inc.
 | ||
|    This file is part of the GNU C Library.
 | ||
|    Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
 | ||
| 
 | ||
|    The GNU C Library is free software; you can redistribute it and/or
 | ||
|    modify it under the terms of the GNU Library General Public License as
 | ||
|    published by the Free Software Foundation; either version 2 of the
 | ||
|    License, or (at your option) any later version.
 | ||
| 
 | ||
|    The GNU C Library is distributed in the hope that it will be useful,
 | ||
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | ||
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | ||
|    Library General Public License for more details.
 | ||
| 
 | ||
|    You should have received a copy of the GNU Library General Public
 | ||
|    License along with the GNU C Library; see the file COPYING.LIB.  If not,
 | ||
|    write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 | ||
|    Boston, MA 02111-1307, USA.  */
 | ||
| 
 | ||
| /* The gmp headers need some configuration frobs.  */
 | ||
| #define HAVE_ALLOCA 1
 | ||
| 
 | ||
| #ifdef USE_IN_LIBIO
 | ||
| #  include <libioP.h>
 | ||
| #else
 | ||
| #  include <stdio.h>
 | ||
| #endif
 | ||
| #include <alloca.h>
 | ||
| #include <ctype.h>
 | ||
| #include <float.h>
 | ||
| #include <gmp-mparam.h>
 | ||
| #include "../stdlib/gmp.h"
 | ||
| #include "../stdlib/gmp-impl.h"
 | ||
| #include "../stdlib/longlong.h"
 | ||
| #include "../stdlib/fpioconst.h"
 | ||
| #include "../locale/localeinfo.h"
 | ||
| #include <limits.h>
 | ||
| #include <math.h>
 | ||
| #include <printf.h>
 | ||
| #include <string.h>
 | ||
| #include <unistd.h>
 | ||
| #include <stdlib.h>
 | ||
| 
 | ||
| #define NDEBUG			/* Undefine this for debugging assertions.  */
 | ||
| #include <assert.h>
 | ||
| 
 | ||
| /* This defines make it possible to use the same code for GNU C library and
 | ||
|    the GNU I/O library.	 */
 | ||
| #ifdef USE_IN_LIBIO
 | ||
| #  define PUT(f, s, n) _IO_sputn (f, s, n)
 | ||
| #  define PAD(f, c, n) _IO_padn (f, c, n)
 | ||
| /* We use this file GNU C library and GNU I/O library.	So make
 | ||
|    names equal.	 */
 | ||
| #  undef putc
 | ||
| #  define putc(c, f) _IO_putc_unlocked (c, f)
 | ||
| #  define size_t     _IO_size_t
 | ||
| #  define FILE	     _IO_FILE
 | ||
| #else	/* ! USE_IN_LIBIO */
 | ||
| #  define PUT(f, s, n) fwrite (s, 1, n, f)
 | ||
| #  define PAD(f, c, n) __printf_pad (f, c, n)
 | ||
| ssize_t __printf_pad __P ((FILE *, char pad, int n)); /* In vfprintf.c.  */
 | ||
| #endif	/* USE_IN_LIBIO */
 | ||
| 
 | ||
| /* Macros for doing the actual output.  */
 | ||
| 
 | ||
| #define outchar(ch)							      \
 | ||
|   do									      \
 | ||
|     {									      \
 | ||
|       register const int outc = (ch);					      \
 | ||
|       if (putc (outc, fp) == EOF)					      \
 | ||
| 	return -1;							      \
 | ||
|       ++done;								      \
 | ||
|     } while (0)
 | ||
| 
 | ||
| #define PRINT(ptr, len)							      \
 | ||
|   do									      \
 | ||
|     {									      \
 | ||
|       register size_t outlen = (len);					      \
 | ||
|       if (len > 20)							      \
 | ||
| 	{								      \
 | ||
| 	  if (PUT (fp, ptr, outlen) != outlen)				      \
 | ||
| 	    return -1;							      \
 | ||
| 	  ptr += outlen;						      \
 | ||
| 	  done += outlen;						      \
 | ||
| 	}								      \
 | ||
|       else								      \
 | ||
| 	{								      \
 | ||
| 	  while (outlen-- > 0)						      \
 | ||
| 	    outchar (*ptr++);						      \
 | ||
| 	}								      \
 | ||
|     } while (0)
 | ||
| 
 | ||
| #define PADN(ch, len)							      \
 | ||
|   do									      \
 | ||
|     {									      \
 | ||
|       if (PAD (fp, ch, len) != len)					      \
 | ||
| 	return -1;							      \
 | ||
|       done += len;							      \
 | ||
|     }									      \
 | ||
|   while (0)
 | ||
| 
 | ||
| /* We use the GNU MP library to handle large numbers.
 | ||
| 
 | ||
|    An MP variable occupies a varying number of entries in its array.  We keep
 | ||
|    track of this number for efficiency reasons.  Otherwise we would always
 | ||
|    have to process the whole array.  */
 | ||
| #define MPN_VAR(name) mp_limb_t *name; mp_size_t name##size
 | ||
| 
 | ||
| #define MPN_ASSIGN(dst,src)						      \
 | ||
|   memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
 | ||
| #define MPN_GE(u,v) \
 | ||
|   (u##size > v##size || (u##size == v##size && __mpn_cmp (u, v, u##size) >= 0))
 | ||
| 
 | ||
| extern int __isinfl (long double), __isnanl (long double);
 | ||
| 
 | ||
| extern mp_size_t __mpn_extract_double (mp_ptr res_ptr, mp_size_t size,
 | ||
| 				       int *expt, int *is_neg,
 | ||
| 				       double value);
 | ||
| extern mp_size_t __mpn_extract_long_double (mp_ptr res_ptr, mp_size_t size,
 | ||
| 					    int *expt, int *is_neg,
 | ||
| 					    long double value);
 | ||
| extern unsigned int __guess_grouping (unsigned int intdig_max,
 | ||
| 				      const char *grouping, wchar_t sepchar);
 | ||
| 
 | ||
| 
 | ||
| static char *group_number (char *buf, char *bufend, unsigned int intdig_no,
 | ||
| 			   const char *grouping, wchar_t thousands_sep);
 | ||
| 
 | ||
| 
 | ||
| int
 | ||
| __printf_fp (FILE *fp,
 | ||
| 	     const struct printf_info *info,
 | ||
| 	     const void *const *args)
 | ||
| {
 | ||
|   /* The floating-point value to output.  */
 | ||
|   union
 | ||
|     {
 | ||
|       double dbl;
 | ||
|       __long_double_t ldbl;
 | ||
|     }
 | ||
|   fpnum;
 | ||
| 
 | ||
|   /* Locale-dependent representation of decimal point.	*/
 | ||
|   wchar_t decimal;
 | ||
| 
 | ||
|   /* Locale-dependent thousands separator and grouping specification.  */
 | ||
|   wchar_t thousands_sep;
 | ||
|   const char *grouping;
 | ||
| 
 | ||
|   /* "NaN" or "Inf" for the special cases.  */
 | ||
|   const char *special = NULL;
 | ||
| 
 | ||
|   /* We need just a few limbs for the input before shifting to the right
 | ||
|      position.	*/
 | ||
|   mp_limb_t fp_input[(LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB];
 | ||
|   /* We need to shift the contents of fp_input by this amount of bits.	*/
 | ||
|   int to_shift = 0;
 | ||
| 
 | ||
|   /* The fraction of the floting-point value in question  */
 | ||
|   MPN_VAR(frac);
 | ||
|   /* and the exponent.	*/
 | ||
|   int exponent;
 | ||
|   /* Sign of the exponent.  */
 | ||
|   int expsign = 0;
 | ||
|   /* Sign of float number.  */
 | ||
|   int is_neg = 0;
 | ||
| 
 | ||
|   /* Scaling factor.  */
 | ||
|   MPN_VAR(scale);
 | ||
| 
 | ||
|   /* Temporary bignum value.  */
 | ||
|   MPN_VAR(tmp);
 | ||
| 
 | ||
|   /* Digit which is result of last hack_digit() call.  */
 | ||
|   int digit;
 | ||
| 
 | ||
|   /* The type of output format that will be used: 'e'/'E' or 'f'.  */
 | ||
|   int type;
 | ||
| 
 | ||
|   /* Counter for number of written characters.	*/
 | ||
|   int done = 0;
 | ||
| 
 | ||
|   /* General helper (carry limb).  */
 | ||
|   mp_limb_t cy;
 | ||
| 
 | ||
|   char hack_digit (void)
 | ||
|     {
 | ||
|       mp_limb_t hi;
 | ||
| 
 | ||
|       if (expsign != 0 && type == 'f' && exponent-- > 0)
 | ||
| 	hi = 0;
 | ||
|       else if (scalesize == 0)
 | ||
| 	{
 | ||
| 	  hi = frac[fracsize - 1];
 | ||
| 	  cy = __mpn_mul_1 (frac, frac, fracsize - 1, 10);
 | ||
| 	  frac[fracsize - 1] = cy;
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  if (fracsize < scalesize)
 | ||
| 	    hi = 0;
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      hi = mpn_divmod (tmp, frac, fracsize, scale, scalesize);
 | ||
| 	      tmp[fracsize - scalesize] = hi;
 | ||
| 	      hi = tmp[0];
 | ||
| 
 | ||
| 	      fracsize = scalesize;
 | ||
| 	      while (fracsize != 0 && frac[fracsize - 1] == 0)
 | ||
| 		--fracsize;
 | ||
| 	      if (fracsize == 0)
 | ||
| 		{
 | ||
| 		  /* We're not prepared for an mpn variable with zero
 | ||
| 		     limbs.  */
 | ||
| 		  fracsize = 1;
 | ||
| 		  return '0' + hi;
 | ||
| 		}
 | ||
| 	    }
 | ||
| 
 | ||
| 	  cy = __mpn_mul_1 (frac, frac, fracsize, 10);
 | ||
| 	  if (cy != 0)
 | ||
| 	    frac[fracsize++] = cy;
 | ||
| 	}
 | ||
| 
 | ||
|       return '0' + hi;
 | ||
|     }
 | ||
| 
 | ||
| 
 | ||
|   /* Figure out the decimal point character.  */
 | ||
|   if (info->extra == 0)
 | ||
|     {
 | ||
|       if (mbtowc (&decimal, _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT),
 | ||
| 		  strlen (_NL_CURRENT (LC_NUMERIC, DECIMAL_POINT))) <= 0)
 | ||
| 	decimal = (wchar_t) *_NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       if (mbtowc (&decimal, _NL_CURRENT (LC_MONETARY, MON_DECIMAL_POINT),
 | ||
| 		  strlen (_NL_CURRENT (LC_MONETARY, MON_DECIMAL_POINT))) <= 0)
 | ||
| 	decimal = (wchar_t) *_NL_CURRENT (LC_MONETARY, MON_DECIMAL_POINT);
 | ||
|     }
 | ||
|   /* Give default value.  */
 | ||
|   if (decimal == L'\0')
 | ||
|     decimal = L'.';
 | ||
| 
 | ||
| 
 | ||
|   if (info->group)
 | ||
|     {
 | ||
|       if (info->extra == 0)
 | ||
| 	grouping = _NL_CURRENT (LC_NUMERIC, GROUPING);
 | ||
|       else
 | ||
| 	grouping = _NL_CURRENT (LC_MONETARY, MON_GROUPING);
 | ||
| 
 | ||
|       if (*grouping <= 0 || *grouping == CHAR_MAX)
 | ||
| 	grouping = NULL;
 | ||
|       else
 | ||
| 	{
 | ||
| 	  /* Figure out the thousands separator character.  */
 | ||
| 	  if (info->extra == 0)
 | ||
| 	    {
 | ||
| 	      if (mbtowc (&thousands_sep, _NL_CURRENT (LC_NUMERIC,
 | ||
| 						       THOUSANDS_SEP),
 | ||
| 			  strlen (_NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP)))
 | ||
| 		  <= 0)
 | ||
| 		thousands_sep = (wchar_t) *_NL_CURRENT (LC_NUMERIC,
 | ||
| 							THOUSANDS_SEP);
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      if (mbtowc (&thousands_sep, _NL_CURRENT (LC_MONETARY,
 | ||
| 						       MON_THOUSANDS_SEP),
 | ||
| 			  strlen (_NL_CURRENT (LC_MONETARY,
 | ||
| 					       MON_THOUSANDS_SEP))) <= 0)
 | ||
| 		thousands_sep = (wchar_t) *_NL_CURRENT (LC_MONETARY,
 | ||
| 							MON_THOUSANDS_SEP);
 | ||
| 	    }
 | ||
| 
 | ||
| 	  if (thousands_sep == L'\0')
 | ||
| 	    grouping = NULL;
 | ||
| 	}
 | ||
|     }
 | ||
|   else
 | ||
|     grouping = NULL;
 | ||
| 
 | ||
|   /* Fetch the argument value.	*/
 | ||
|   if (info->is_long_double && sizeof (long double) > sizeof (double))
 | ||
|     {
 | ||
|       fpnum.ldbl = *(const long double *) args[0];
 | ||
| 
 | ||
|       /* Check for special values: not a number or infinity.  */
 | ||
|       if (__isnanl (fpnum.ldbl))
 | ||
| 	{
 | ||
| 	  special = isupper (info->spec) ? "NAN" : "nan";
 | ||
| 	  is_neg = 0;
 | ||
| 	}
 | ||
|       else if (__isinfl (fpnum.ldbl))
 | ||
| 	{
 | ||
| 	  special = isupper (info->spec) ? "INF" : "inf";
 | ||
| 	  is_neg = fpnum.ldbl < 0;
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  fracsize = __mpn_extract_long_double (fp_input,
 | ||
| 						(sizeof (fp_input) /
 | ||
| 						 sizeof (fp_input[0])),
 | ||
| 						&exponent, &is_neg,
 | ||
| 						fpnum.ldbl);
 | ||
| 	  to_shift = 1 + fracsize * BITS_PER_MP_LIMB - LDBL_MANT_DIG;
 | ||
| 	}
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       fpnum.dbl = *(const double *) args[0];
 | ||
| 
 | ||
|       /* Check for special values: not a number or infinity.  */
 | ||
|       if (__isnan (fpnum.dbl))
 | ||
| 	{
 | ||
| 	  special = isupper (info->spec) ? "NAN" : "nan";
 | ||
| 	  is_neg = 0;
 | ||
| 	}
 | ||
|       else if (__isinf (fpnum.dbl))
 | ||
| 	{
 | ||
| 	  special = isupper (info->spec) ? "INF" : "inf";
 | ||
| 	  is_neg = fpnum.dbl < 0;
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  fracsize = __mpn_extract_double (fp_input,
 | ||
| 					   (sizeof (fp_input)
 | ||
| 					    / sizeof (fp_input[0])),
 | ||
| 					   &exponent, &is_neg, fpnum.dbl);
 | ||
| 	  to_shift = 1 + fracsize * BITS_PER_MP_LIMB - DBL_MANT_DIG;
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   if (special)
 | ||
|     {
 | ||
|       int width = info->prec > info->width ? info->prec : info->width;
 | ||
| 
 | ||
|       if (is_neg || info->showsign || info->space)
 | ||
| 	--width;
 | ||
|       width -= 3;
 | ||
| 
 | ||
|       if (!info->left && width > 0)
 | ||
| 	PADN (' ', width);
 | ||
| 
 | ||
|       if (is_neg)
 | ||
| 	outchar ('-');
 | ||
|       else if (info->showsign)
 | ||
| 	outchar ('+');
 | ||
|       else if (info->space)
 | ||
| 	outchar (' ');
 | ||
| 
 | ||
|       PRINT (special, 3);
 | ||
| 
 | ||
|       if (info->left && width > 0)
 | ||
| 	PADN (' ', width);
 | ||
| 
 | ||
|       return done;
 | ||
|     }
 | ||
| 
 | ||
| 
 | ||
|   /* We need three multiprecision variables.  Now that we have the exponent
 | ||
|      of the number we can allocate the needed memory.  It would be more
 | ||
|      efficient to use variables of the fixed maximum size but because this
 | ||
|      would be really big it could lead to memory problems.  */
 | ||
|   {
 | ||
|     mp_size_t bignum_size = ((ABS (exponent) + BITS_PER_MP_LIMB - 1)
 | ||
| 			     / BITS_PER_MP_LIMB + 4) * sizeof (mp_limb_t);
 | ||
|     frac = (mp_limb_t *) alloca (bignum_size);
 | ||
|     tmp = (mp_limb_t *) alloca (bignum_size);
 | ||
|     scale = (mp_limb_t *) alloca (bignum_size);
 | ||
|   }
 | ||
| 
 | ||
|   /* We now have to distinguish between numbers with positive and negative
 | ||
|      exponents because the method used for the one is not applicable/efficient
 | ||
|      for the other.  */
 | ||
|   scalesize = 0;
 | ||
|   if (exponent > 2)
 | ||
|     {
 | ||
|       /* |FP| >= 8.0.  */
 | ||
|       int scaleexpo = 0;
 | ||
|       int explog = LDBL_MAX_10_EXP_LOG;
 | ||
|       int exp10 = 0;
 | ||
|       const struct mp_power *tens = &_fpioconst_pow10[explog + 1];
 | ||
|       int cnt_h, cnt_l, i;
 | ||
| 
 | ||
|       if ((exponent + to_shift) % BITS_PER_MP_LIMB == 0)
 | ||
| 	{
 | ||
| 	  MPN_COPY_DECR (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
 | ||
| 			 fp_input, fracsize);
 | ||
| 	  fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
 | ||
| 	}
 | ||
|       else
 | ||
| 	{
 | ||
| 	  cy = __mpn_lshift (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
 | ||
| 			     fp_input, fracsize,
 | ||
| 			     (exponent + to_shift) % BITS_PER_MP_LIMB);
 | ||
| 	  fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
 | ||
| 	  if (cy)
 | ||
| 	    frac[fracsize++] = cy;
 | ||
| 	}
 | ||
|       MPN_ZERO (frac, (exponent + to_shift) / BITS_PER_MP_LIMB);
 | ||
| 
 | ||
|       assert (tens > &_fpioconst_pow10[0]);
 | ||
|       do
 | ||
| 	{
 | ||
| 	  --tens;
 | ||
| 
 | ||
| 	  /* The number of the product of two binary numbers with n and m
 | ||
| 	     bits respectively has m+n or m+n-1 bits.	*/
 | ||
| 	  if (exponent >= scaleexpo + tens->p_expo - 1)
 | ||
| 	    {
 | ||
| 	      if (scalesize == 0)
 | ||
| 		MPN_ASSIGN (tmp, tens->array);
 | ||
| 	      else
 | ||
| 		{
 | ||
| 		  cy = __mpn_mul (tmp, scale, scalesize,
 | ||
| 				  &tens->array[_FPIO_CONST_OFFSET],
 | ||
| 				  tens->arraysize - _FPIO_CONST_OFFSET);
 | ||
| 		  tmpsize = scalesize + tens->arraysize - _FPIO_CONST_OFFSET;
 | ||
| 		  if (cy == 0)
 | ||
| 		    --tmpsize;
 | ||
| 		}
 | ||
| 
 | ||
| 	      if (MPN_GE (frac, tmp))
 | ||
| 		{
 | ||
| 		  int cnt;
 | ||
| 		  MPN_ASSIGN (scale, tmp);
 | ||
| 		  count_leading_zeros (cnt, scale[scalesize - 1]);
 | ||
| 		  scaleexpo = (scalesize - 2) * BITS_PER_MP_LIMB - cnt - 1;
 | ||
| 		  exp10 |= 1 << explog;
 | ||
| 		}
 | ||
| 	    }
 | ||
| 	  --explog;
 | ||
| 	}
 | ||
|       while (tens > &_fpioconst_pow10[0]);
 | ||
|       exponent = exp10;
 | ||
| 
 | ||
|       /* Optimize number representations.  We want to represent the numbers
 | ||
| 	 with the lowest number of bytes possible without losing any
 | ||
| 	 bytes. Also the highest bit in the scaling factor has to be set
 | ||
| 	 (this is a requirement of the MPN division routines).  */
 | ||
|       if (scalesize > 0)
 | ||
| 	{
 | ||
| 	  /* Determine minimum number of zero bits at the end of
 | ||
| 	     both numbers.  */
 | ||
| 	  for (i = 0; scale[i] == 0 && frac[i] == 0; i++)
 | ||
| 	    ;
 | ||
| 
 | ||
| 	  /* Determine number of bits the scaling factor is misplaced.	*/
 | ||
| 	  count_leading_zeros (cnt_h, scale[scalesize - 1]);
 | ||
| 
 | ||
| 	  if (cnt_h == 0)
 | ||
| 	    {
 | ||
| 	      /* The highest bit of the scaling factor is already set.	So
 | ||
| 		 we only have to remove the trailing empty limbs.  */
 | ||
| 	      if (i > 0)
 | ||
| 		{
 | ||
| 		  MPN_COPY_INCR (scale, scale + i, scalesize - i);
 | ||
| 		  scalesize -= i;
 | ||
| 		  MPN_COPY_INCR (frac, frac + i, fracsize - i);
 | ||
| 		  fracsize -= i;
 | ||
| 		}
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      if (scale[i] != 0)
 | ||
| 		{
 | ||
| 		  count_trailing_zeros (cnt_l, scale[i]);
 | ||
| 		  if (frac[i] != 0)
 | ||
| 		    {
 | ||
| 		      int cnt_l2;
 | ||
| 		      count_trailing_zeros (cnt_l2, frac[i]);
 | ||
| 		      if (cnt_l2 < cnt_l)
 | ||
| 			cnt_l = cnt_l2;
 | ||
| 		    }
 | ||
| 		}
 | ||
| 	      else
 | ||
| 		count_trailing_zeros (cnt_l, frac[i]);
 | ||
| 
 | ||
| 	      /* Now shift the numbers to their optimal position.  */
 | ||
| 	      if (i == 0 && BITS_PER_MP_LIMB - cnt_h > cnt_l)
 | ||
| 		{
 | ||
| 		  /* We cannot save any memory.	 So just roll both numbers
 | ||
| 		     so that the scaling factor has its highest bit set.  */
 | ||
| 
 | ||
| 		  (void) __mpn_lshift (scale, scale, scalesize, cnt_h);
 | ||
| 		  cy = __mpn_lshift (frac, frac, fracsize, cnt_h);
 | ||
| 		  if (cy != 0)
 | ||
| 		    frac[fracsize++] = cy;
 | ||
| 		}
 | ||
| 	      else if (BITS_PER_MP_LIMB - cnt_h <= cnt_l)
 | ||
| 		{
 | ||
| 		  /* We can save memory by removing the trailing zero limbs
 | ||
| 		     and by packing the non-zero limbs which gain another
 | ||
| 		     free one. */
 | ||
| 
 | ||
| 		  (void) __mpn_rshift (scale, scale + i, scalesize - i,
 | ||
| 				       BITS_PER_MP_LIMB - cnt_h);
 | ||
| 		  scalesize -= i + 1;
 | ||
| 		  (void) __mpn_rshift (frac, frac + i, fracsize - i,
 | ||
| 				       BITS_PER_MP_LIMB - cnt_h);
 | ||
| 		  fracsize -= frac[fracsize - i - 1] == 0 ? i + 1 : i;
 | ||
| 		}
 | ||
| 	      else
 | ||
| 		{
 | ||
| 		  /* We can only save the memory of the limbs which are zero.
 | ||
| 		     The non-zero parts occupy the same number of limbs.  */
 | ||
| 
 | ||
| 		  (void) __mpn_rshift (scale, scale + (i - 1),
 | ||
| 				       scalesize - (i - 1),
 | ||
| 				       BITS_PER_MP_LIMB - cnt_h);
 | ||
| 		  scalesize -= i;
 | ||
| 		  (void) __mpn_rshift (frac, frac + (i - 1),
 | ||
| 				       fracsize - (i - 1),
 | ||
| 				       BITS_PER_MP_LIMB - cnt_h);
 | ||
| 		  fracsize -= frac[fracsize - (i - 1) - 1] == 0 ? i : i - 1;
 | ||
| 		}
 | ||
| 	    }
 | ||
| 	}
 | ||
|     }
 | ||
|   else if (exponent < 0)
 | ||
|     {
 | ||
|       /* |FP| < 1.0.  */
 | ||
|       int exp10 = 0;
 | ||
|       int explog = LDBL_MAX_10_EXP_LOG;
 | ||
|       const struct mp_power *tens = &_fpioconst_pow10[explog + 1];
 | ||
|       mp_size_t used_limbs = fracsize - 1;
 | ||
| 
 | ||
|       /* Now shift the input value to its right place.	*/
 | ||
|       cy = __mpn_lshift (frac, fp_input, fracsize, to_shift);
 | ||
|       frac[fracsize++] = cy;
 | ||
|       assert (cy == 1 || (frac[fracsize - 2] == 0 && frac[0] == 0));
 | ||
| 
 | ||
|       expsign = 1;
 | ||
|       exponent = -exponent;
 | ||
| 
 | ||
|       assert (tens != &_fpioconst_pow10[0]);
 | ||
|       do
 | ||
| 	{
 | ||
| 	  --tens;
 | ||
| 
 | ||
| 	  if (exponent >= tens->m_expo)
 | ||
| 	    {
 | ||
| 	      int i, incr, cnt_h, cnt_l;
 | ||
| 	      mp_limb_t topval[2];
 | ||
| 
 | ||
| 	      /* The __mpn_mul function expects the first argument to be
 | ||
| 		 bigger than the second.  */
 | ||
| 	      if (fracsize < tens->arraysize - _FPIO_CONST_OFFSET)
 | ||
| 		cy = __mpn_mul (tmp, &tens->array[_FPIO_CONST_OFFSET],
 | ||
| 				tens->arraysize - _FPIO_CONST_OFFSET,
 | ||
| 				frac, fracsize);
 | ||
| 	      else
 | ||
| 		cy = __mpn_mul (tmp, frac, fracsize,
 | ||
| 				&tens->array[_FPIO_CONST_OFFSET],
 | ||
| 				tens->arraysize - _FPIO_CONST_OFFSET);
 | ||
| 	      tmpsize = fracsize + tens->arraysize - _FPIO_CONST_OFFSET;
 | ||
| 	      if (cy == 0)
 | ||
| 		--tmpsize;
 | ||
| 
 | ||
| 	      count_leading_zeros (cnt_h, tmp[tmpsize - 1]);
 | ||
| 	      incr = (tmpsize - fracsize) * BITS_PER_MP_LIMB
 | ||
| 		     + BITS_PER_MP_LIMB - 1 - cnt_h;
 | ||
| 
 | ||
| 	      assert (incr <= tens->p_expo);
 | ||
| 
 | ||
| 	      /* If we increased the exponent by exactly 3 we have to test
 | ||
| 		 for overflow.	This is done by comparing with 10 shifted
 | ||
| 		 to the right position.	 */
 | ||
| 	      if (incr == exponent + 3)
 | ||
| 		if (cnt_h <= BITS_PER_MP_LIMB - 4)
 | ||
| 		  {
 | ||
| 		    topval[0] = 0;
 | ||
| 		    topval[1]
 | ||
| 		      = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4 - cnt_h);
 | ||
| 		  }
 | ||
| 		else
 | ||
| 		  {
 | ||
| 		    topval[0] = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4);
 | ||
| 		    topval[1] = 0;
 | ||
| 		    (void) __mpn_lshift (topval, topval, 2,
 | ||
| 					 BITS_PER_MP_LIMB - cnt_h);
 | ||
| 		  }
 | ||
| 
 | ||
| 	      /* We have to be careful when multiplying the last factor.
 | ||
| 		 If the result is greater than 1.0 be have to test it
 | ||
| 		 against 10.0.  If it is greater or equal to 10.0 the
 | ||
| 		 multiplication was not valid.  This is because we cannot
 | ||
| 		 determine the number of bits in the result in advance.  */
 | ||
| 	      if (incr < exponent + 3
 | ||
| 		  || (incr == exponent + 3 &&
 | ||
| 		      (tmp[tmpsize - 1] < topval[1]
 | ||
| 		       || (tmp[tmpsize - 1] == topval[1]
 | ||
| 			   && tmp[tmpsize - 2] < topval[0]))))
 | ||
| 		{
 | ||
| 		  /* The factor is right.  Adapt binary and decimal
 | ||
| 		     exponents.	 */
 | ||
| 		  exponent -= incr;
 | ||
| 		  exp10 |= 1 << explog;
 | ||
| 
 | ||
| 		  /* If this factor yields a number greater or equal to
 | ||
| 		     1.0, we must not shift the non-fractional digits down. */
 | ||
| 		  if (exponent < 0)
 | ||
| 		    cnt_h += -exponent;
 | ||
| 
 | ||
| 		  /* Now we optimize the number representation.	 */
 | ||
| 		  for (i = 0; tmp[i] == 0; ++i);
 | ||
| 		  if (cnt_h == BITS_PER_MP_LIMB - 1)
 | ||
| 		    {
 | ||
| 		      MPN_COPY (frac, tmp + i, tmpsize - i);
 | ||
| 		      fracsize = tmpsize - i;
 | ||
| 		    }
 | ||
| 		  else
 | ||
| 		    {
 | ||
| 		      count_trailing_zeros (cnt_l, tmp[i]);
 | ||
| 
 | ||
| 		      /* Now shift the numbers to their optimal position.  */
 | ||
| 		      if (i == 0 && BITS_PER_MP_LIMB - 1 - cnt_h > cnt_l)
 | ||
| 			{
 | ||
| 			  /* We cannot save any memory.	 Just roll the
 | ||
| 			     number so that the leading digit is in a
 | ||
| 			     separate limb.  */
 | ||
| 
 | ||
| 			  cy = __mpn_lshift (frac, tmp, tmpsize, cnt_h + 1);
 | ||
| 			  fracsize = tmpsize + 1;
 | ||
| 			  frac[fracsize - 1] = cy;
 | ||
| 			}
 | ||
| 		      else if (BITS_PER_MP_LIMB - 1 - cnt_h <= cnt_l)
 | ||
| 			{
 | ||
| 			  (void) __mpn_rshift (frac, tmp + i, tmpsize - i,
 | ||
| 					       BITS_PER_MP_LIMB - 1 - cnt_h);
 | ||
| 			  fracsize = tmpsize - i;
 | ||
| 			}
 | ||
| 		      else
 | ||
| 			{
 | ||
| 			  /* We can only save the memory of the limbs which
 | ||
| 			     are zero.	The non-zero parts occupy the same
 | ||
| 			     number of limbs.  */
 | ||
| 
 | ||
| 			  (void) __mpn_rshift (frac, tmp + (i - 1),
 | ||
| 					       tmpsize - (i - 1),
 | ||
| 					       BITS_PER_MP_LIMB - 1 - cnt_h);
 | ||
| 			  fracsize = tmpsize - (i - 1);
 | ||
| 			}
 | ||
| 		    }
 | ||
| 		  used_limbs = fracsize - 1;
 | ||
| 		}
 | ||
| 	    }
 | ||
| 	  --explog;
 | ||
| 	}
 | ||
|       while (tens != &_fpioconst_pow10[1] && exponent > 0);
 | ||
|       /* All factors but 10^-1 are tested now.	*/
 | ||
|       if (exponent > 0)
 | ||
| 	{
 | ||
| 	  int cnt_l;
 | ||
| 
 | ||
| 	  cy = __mpn_mul_1 (tmp, frac, fracsize, 10);
 | ||
| 	  tmpsize = fracsize;
 | ||
| 	  assert (cy == 0 || tmp[tmpsize - 1] < 20);
 | ||
| 
 | ||
| 	  count_trailing_zeros (cnt_l, tmp[0]);
 | ||
| 	  if (cnt_l < MIN (4, exponent))
 | ||
| 	    {
 | ||
| 	      cy = __mpn_lshift (frac, tmp, tmpsize,
 | ||
| 				 BITS_PER_MP_LIMB - MIN (4, exponent));
 | ||
| 	      if (cy != 0)
 | ||
| 		frac[tmpsize++] = cy;
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    (void) __mpn_rshift (frac, tmp, tmpsize, MIN (4, exponent));
 | ||
| 	  fracsize = tmpsize;
 | ||
| 	  exp10 |= 1;
 | ||
| 	  assert (frac[fracsize - 1] < 10);
 | ||
| 	}
 | ||
|       exponent = exp10;
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       /* This is a special case.  We don't need a factor because the
 | ||
| 	 numbers are in the range of 0.0 <= fp < 8.0.  We simply
 | ||
| 	 shift it to the right place and divide it by 1.0 to get the
 | ||
| 	 leading digit.	 (Of course this division is not really made.)	*/
 | ||
|       assert (0 <= exponent && exponent < 3 &&
 | ||
| 	      exponent + to_shift < BITS_PER_MP_LIMB);
 | ||
| 
 | ||
|       /* Now shift the input value to its right place.	*/
 | ||
|       cy = __mpn_lshift (frac, fp_input, fracsize, (exponent + to_shift));
 | ||
|       frac[fracsize++] = cy;
 | ||
|       exponent = 0;
 | ||
|     }
 | ||
| 
 | ||
|   {
 | ||
|     int width = info->width;
 | ||
|     char *buffer, *startp, *cp;
 | ||
|     int chars_needed;
 | ||
|     int expscale;
 | ||
|     int intdig_max, intdig_no = 0;
 | ||
|     int fracdig_min, fracdig_max, fracdig_no = 0;
 | ||
|     int dig_max;
 | ||
|     int significant;
 | ||
| 
 | ||
|     if (tolower (info->spec) == 'e')
 | ||
|       {
 | ||
| 	type = info->spec;
 | ||
| 	intdig_max = 1;
 | ||
| 	fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
 | ||
| 	chars_needed = 1 + 1 + fracdig_max + 1 + 1 + 4;
 | ||
| 	/*	       d   .	 ddd	     e	 +-  ddd  */
 | ||
| 	dig_max = INT_MAX;		/* Unlimited.  */
 | ||
| 	significant = 1;		/* Does not matter here.  */
 | ||
|       }
 | ||
|     else if (info->spec == 'f')
 | ||
|       {
 | ||
| 	type = 'f';
 | ||
| 	fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
 | ||
| 	if (expsign == 0)
 | ||
| 	  {
 | ||
| 	    intdig_max = exponent + 1;
 | ||
| 	    /* This can be really big!	*/  /* XXX Maybe malloc if too big? */
 | ||
| 	    chars_needed = exponent + 1 + 1 + fracdig_max;
 | ||
| 	  }
 | ||
| 	else
 | ||
| 	  {
 | ||
| 	    intdig_max = 1;
 | ||
| 	    chars_needed = 1 + 1 + fracdig_max;
 | ||
| 	  }
 | ||
| 	dig_max = INT_MAX;		/* Unlimited.  */
 | ||
| 	significant = 1;		/* Does not matter here.  */
 | ||
|       }
 | ||
|     else
 | ||
|       {
 | ||
| 	dig_max = info->prec < 0 ? 6 : (info->prec == 0 ? 1 : info->prec);
 | ||
| 	if ((expsign == 0 && exponent >= dig_max)
 | ||
| 	    || (expsign != 0 && exponent > 4))
 | ||
| 	  {
 | ||
| 	    type = isupper (info->spec) ? 'E' : 'e';
 | ||
| 	    fracdig_max = dig_max - 1;
 | ||
| 	    intdig_max = 1;
 | ||
| 	    chars_needed = 1 + 1 + fracdig_max + 1 + 1 + 4;
 | ||
| 	  }
 | ||
| 	else
 | ||
| 	  {
 | ||
| 	    type = 'f';
 | ||
| 	    intdig_max = expsign == 0 ? exponent + 1 : 0;
 | ||
| 	    fracdig_max = dig_max - intdig_max;
 | ||
| 	    /* We need space for the significant digits and perhaps for
 | ||
| 	       leading zeros when < 1.0.  Pessimistic guess: dig_max.  */
 | ||
| 	    chars_needed = dig_max + dig_max + 1;
 | ||
| 	  }
 | ||
| 	fracdig_min = info->alt ? fracdig_max : 0;
 | ||
| 	significant = 0;		/* We count significant digits.	 */
 | ||
|       }
 | ||
| 
 | ||
|     if (grouping)
 | ||
|       /* Guess the number of groups we will make, and thus how
 | ||
| 	 many spaces we need for separator characters.  */
 | ||
|       chars_needed += __guess_grouping (intdig_max, grouping, thousands_sep);
 | ||
| 
 | ||
|     /* Allocate buffer for output.  We need two more because while rounding
 | ||
|        it is possible that we need two more characters in front of all the
 | ||
|        other output.  */
 | ||
|     buffer = alloca (2 + chars_needed);
 | ||
|     cp = startp = buffer + 2;	/* Let room for rounding.  */
 | ||
| 
 | ||
|     /* Do the real work: put digits in allocated buffer.  */
 | ||
|     if (expsign == 0 || type != 'f')
 | ||
|       {
 | ||
| 	assert (expsign == 0 || intdig_max == 1);
 | ||
| 	while (intdig_no < intdig_max)
 | ||
| 	  {
 | ||
| 	    ++intdig_no;
 | ||
| 	    *cp++ = hack_digit ();
 | ||
| 	  }
 | ||
| 	significant = 1;
 | ||
| 	if (info->alt
 | ||
| 	    || fracdig_min > 0
 | ||
| 	    || (fracdig_max > 0 && (fracsize > 1 || frac[0] != 0)))
 | ||
| 	  *cp++ = decimal;
 | ||
|       }
 | ||
|     else
 | ||
|       {
 | ||
| 	/* |fp| < 1.0 and the selected type is 'f', so put "0."
 | ||
| 	   in the buffer.  */
 | ||
| 	*cp++ = '0';
 | ||
| 	--exponent;
 | ||
| 	*cp++ = decimal;
 | ||
|       }
 | ||
| 
 | ||
|     /* Generate the needed number of fractional digits.	 */
 | ||
|     while (fracdig_no < fracdig_min
 | ||
| 	   || (fracdig_no < fracdig_max && (fracsize > 1 || frac[0] != 0)))
 | ||
|       {
 | ||
| 	++fracdig_no;
 | ||
| 	*cp = hack_digit ();
 | ||
| 	if (*cp != '0')
 | ||
| 	  significant = 1;
 | ||
| 	else if (significant == 0)
 | ||
| 	  {
 | ||
| 	    ++fracdig_max;
 | ||
| 	    if (fracdig_min > 0)
 | ||
| 	      ++fracdig_min;
 | ||
| 	  }
 | ||
| 	++cp;
 | ||
|       }
 | ||
| 
 | ||
|     /* Do rounding.  */
 | ||
|     digit = hack_digit ();
 | ||
|     if (digit > '4')
 | ||
|       {
 | ||
| 	char *tp = cp;
 | ||
| 
 | ||
| 	if (digit == '5')
 | ||
| 	  /* This is the critical case.	 */
 | ||
| 	  if (fracsize == 1 && frac[0] == 0)
 | ||
| 	    /* Rest of the number is zero -> round to even.
 | ||
| 	       (IEEE 754-1985 4.1 says this is the default rounding.)  */
 | ||
| 	    if ((*(cp - 1) & 1) == 0)
 | ||
| 	      goto do_expo;
 | ||
| 
 | ||
| 	if (fracdig_no > 0)
 | ||
| 	  {
 | ||
| 	    /* Process fractional digits.  Terminate if not rounded or
 | ||
| 	       radix character is reached.  */
 | ||
| 	    while (*--tp != decimal && *tp == '9')
 | ||
| 	      *tp = '0';
 | ||
| 	    if (*tp != decimal)
 | ||
| 	      /* Round up.  */
 | ||
| 	      (*tp)++;
 | ||
| 	  }
 | ||
| 
 | ||
| 	if (fracdig_no == 0 || *tp == decimal)
 | ||
| 	  {
 | ||
| 	    /* Round the integer digits.  */
 | ||
| 	    if (*(tp - 1) == decimal)
 | ||
| 	      --tp;
 | ||
| 
 | ||
| 	    while (--tp >= startp && *tp == '9')
 | ||
| 	      *tp = '0';
 | ||
| 
 | ||
| 	    if (tp >= startp)
 | ||
| 	      /* Round up.  */
 | ||
| 	      (*tp)++;
 | ||
| 	    else
 | ||
| 	      /* It is more critical.  All digits were 9's.  */
 | ||
| 	      {
 | ||
| 		if (type != 'f')
 | ||
| 		  {
 | ||
| 		    *startp = '1';
 | ||
| 		    exponent += expsign == 0 ? 1 : -1;
 | ||
| 		  }
 | ||
| 		else if (intdig_no == dig_max)
 | ||
| 		  {
 | ||
| 		    /* This is the case where for type %g the number fits
 | ||
| 		       really in the range for %f output but after rounding
 | ||
| 		       the number of digits is too big.	 */
 | ||
| 		    *--startp = decimal;
 | ||
| 		    *--startp = '1';
 | ||
| 
 | ||
| 		    if (info->alt || fracdig_no > 0)
 | ||
| 		      {
 | ||
| 			/* Overwrite the old radix character.  */
 | ||
| 			startp[intdig_no + 2] = '0';
 | ||
| 			++fracdig_no;
 | ||
| 		      }
 | ||
| 
 | ||
| 		    fracdig_no += intdig_no;
 | ||
| 		    intdig_no = 1;
 | ||
| 		    fracdig_max = intdig_max - intdig_no;
 | ||
| 		    ++exponent;
 | ||
| 		    /* Now we must print the exponent.	*/
 | ||
| 		    type = isupper (info->spec) ? 'E' : 'e';
 | ||
| 		  }
 | ||
| 		else
 | ||
| 		  {
 | ||
| 		    /* We can simply add another another digit before the
 | ||
| 		       radix.  */
 | ||
| 		    *--startp = '1';
 | ||
| 		    ++intdig_no;
 | ||
| 		  }
 | ||
| 
 | ||
| 		/* While rounding the number of digits can change.
 | ||
| 		   If the number now exceeds the limits remove some
 | ||
| 		   fractional digits.  */
 | ||
| 		if (intdig_no + fracdig_no > dig_max)
 | ||
| 		  {
 | ||
| 		    cp -= intdig_no + fracdig_no - dig_max;
 | ||
| 		    fracdig_no -= intdig_no + fracdig_no - dig_max;
 | ||
| 		  }
 | ||
| 	      }
 | ||
| 	  }
 | ||
|       }
 | ||
| 
 | ||
|   do_expo:
 | ||
|     /* Now remove unnecessary '0' at the end of the string.  */
 | ||
|     while (fracdig_no > fracdig_min && *(cp - 1) == '0')
 | ||
|       {
 | ||
| 	--cp;
 | ||
| 	--fracdig_no;
 | ||
|       }
 | ||
|     /* If we eliminate all fractional digits we perhaps also can remove
 | ||
|        the radix character.  */
 | ||
|     if (fracdig_no == 0 && !info->alt && *(cp - 1) == decimal)
 | ||
|       --cp;
 | ||
| 
 | ||
|     if (grouping)
 | ||
|       /* Add in separator characters, overwriting the same buffer.  */
 | ||
|       cp = group_number (startp, cp, intdig_no, grouping, thousands_sep);
 | ||
| 
 | ||
|     /* Write the exponent if it is needed.  */
 | ||
|     if (type != 'f')
 | ||
|       {
 | ||
| 	*cp++ = type;
 | ||
| 	*cp++ = expsign ? '-' : '+';
 | ||
| 
 | ||
| 	/* Find the magnitude of the exponent.	*/
 | ||
| 	expscale = 10;
 | ||
| 	while (expscale <= exponent)
 | ||
| 	  expscale *= 10;
 | ||
| 
 | ||
| 	if (exponent < 10)
 | ||
| 	  /* Exponent always has at least two digits.  */
 | ||
| 	  *cp++ = '0';
 | ||
| 	else
 | ||
| 	  do
 | ||
| 	    {
 | ||
| 	      expscale /= 10;
 | ||
| 	      *cp++ = '0' + (exponent / expscale);
 | ||
| 	      exponent %= expscale;
 | ||
| 	    }
 | ||
| 	  while (expscale > 10);
 | ||
| 	*cp++ = '0' + exponent;
 | ||
|       }
 | ||
| 
 | ||
|     /* Compute number of characters which must be filled with the padding
 | ||
|        character.  */
 | ||
|     if (is_neg || info->showsign || info->space)
 | ||
|       --width;
 | ||
|     width -= cp - startp;
 | ||
| 
 | ||
|     if (!info->left && info->pad != '0' && width > 0)
 | ||
|       PADN (info->pad, width);
 | ||
| 
 | ||
|     if (is_neg)
 | ||
|       outchar ('-');
 | ||
|     else if (info->showsign)
 | ||
|       outchar ('+');
 | ||
|     else if (info->space)
 | ||
|       outchar (' ');
 | ||
| 
 | ||
|     if (!info->left && info->pad == '0' && width > 0)
 | ||
|       PADN ('0', width);
 | ||
| 
 | ||
|     PRINT (startp, cp - startp);
 | ||
| 
 | ||
|     if (info->left && width > 0)
 | ||
|       PADN (info->pad, width);
 | ||
|   }
 | ||
|   return done;
 | ||
| }
 | ||
| 
 | ||
| /* Return the number of extra grouping characters that will be inserted
 | ||
|    into a number with INTDIG_MAX integer digits.  */
 | ||
| 
 | ||
| unsigned int
 | ||
| __guess_grouping (unsigned int intdig_max, const char *grouping,
 | ||
| 		  wchar_t sepchar)
 | ||
| {
 | ||
|   unsigned int groups;
 | ||
| 
 | ||
|   /* We treat all negative values like CHAR_MAX.  */
 | ||
| 
 | ||
|   if (*grouping == CHAR_MAX || *grouping <= 0)
 | ||
|     /* No grouping should be done.  */
 | ||
|     return 0;
 | ||
| 
 | ||
|   groups = 0;
 | ||
|   while (intdig_max > (unsigned int) *grouping)
 | ||
|     {
 | ||
|       ++groups;
 | ||
|       intdig_max -= *grouping++;
 | ||
| 
 | ||
|       if (*grouping == CHAR_MAX || *grouping < 0)
 | ||
| 	/* No more grouping should be done.  */
 | ||
| 	break;
 | ||
|       else if (*grouping == 0)
 | ||
| 	{
 | ||
| 	  /* Same grouping repeats.  */
 | ||
| 	  groups += (intdig_max - 1) / grouping[-1];
 | ||
| 	  break;
 | ||
| 	}
 | ||
|     }
 | ||
| 
 | ||
|   return groups;
 | ||
| }
 | ||
| 
 | ||
| /* Group the INTDIG_NO integer digits of the number in [BUF,BUFEND).
 | ||
|    There is guaranteed enough space past BUFEND to extend it.
 | ||
|    Return the new end of buffer.  */
 | ||
| 
 | ||
| static char *
 | ||
| group_number (char *buf, char *bufend, unsigned int intdig_no,
 | ||
| 	      const char *grouping, wchar_t thousands_sep)
 | ||
| {
 | ||
|   unsigned int groups = __guess_grouping (intdig_no, grouping, thousands_sep);
 | ||
|   char *p;
 | ||
| 
 | ||
|   if (groups == 0)
 | ||
|     return bufend;
 | ||
| 
 | ||
|   /* Move the fractional part down.  */
 | ||
|   memmove (buf + intdig_no + groups, buf + intdig_no,
 | ||
| 	   bufend - (buf + intdig_no));
 | ||
| 
 | ||
|   p = buf + intdig_no + groups - 1;
 | ||
|   do
 | ||
|     {
 | ||
|       unsigned int len = *grouping++;
 | ||
|       do
 | ||
| 	*p-- = buf[--intdig_no];
 | ||
|       while (--len > 0);
 | ||
|       *p-- = thousands_sep;
 | ||
| 
 | ||
|       if (*grouping == CHAR_MAX || *grouping < 0)
 | ||
| 	/* No more grouping should be done.  */
 | ||
| 	break;
 | ||
|       else if (*grouping == 0)
 | ||
| 	/* Same grouping repeats.  */
 | ||
| 	--grouping;
 | ||
|     } while (intdig_no > (unsigned int) *grouping);
 | ||
| 
 | ||
|   /* Copy the remaining ungrouped digits.  */
 | ||
|   do
 | ||
|     *p-- = buf[--intdig_no];
 | ||
|   while (p > buf);
 | ||
| 
 | ||
|   return bufend + groups;
 | ||
| }
 |