glibc/sysdeps/aarch64/fpu/erfcf_advsimd.c

177 lines
6.1 KiB
C

/* Single-precision vector (Advanced SIMD) erfc function
Copyright (C) 2024 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "v_math.h"
static const struct data
{
uint32x4_t offset, table_scale;
float32x4_t max, shift;
float coeffs[4];
float32x4_t third, two_over_five, tenth;
#if WANT_SIMD_EXCEPT
float32x4_t uflow_bound;
#endif
} data = {
/* Set an offset so the range of the index used for lookup is 644, and it can
be clamped using a saturated add. */
.offset = V4 (0xb7fffd7b), /* 0xffffffff - asuint(shift) - 644. */
.table_scale = V4 (0x28000000 << 1), /* asuint (2^-47) << 1. */
.max = V4 (10.0625f), /* 10 + 1/16 = 644/64. */
.shift = V4 (0x1p17f),
/* Store 1/3, 2/3 and 2/15 in a single register for use with indexed muls and
fmas. */
.coeffs = { 0x1.555556p-2f, 0x1.555556p-1f, 0x1.111112p-3f, 0 },
.third = V4 (0x1.555556p-2f),
.two_over_five = V4 (-0x1.99999ap-2f),
.tenth = V4 (-0x1.99999ap-4f),
#if WANT_SIMD_EXCEPT
.uflow_bound = V4 (0x1.2639cp+3f),
#endif
};
#define TinyBound 0x41000000 /* 0x1p-62f << 1. */
#define Thres 0xbe000000 /* asuint(infinity) << 1 - TinyBound. */
#define Off 0xfffffd7b /* 0xffffffff - 644. */
struct entry
{
float32x4_t erfc;
float32x4_t scale;
};
static inline struct entry
lookup (uint32x4_t i)
{
struct entry e;
float32x2_t t0
= vld1_f32 (&__erfcf_data.tab[vgetq_lane_u32 (i, 0) - Off].erfc);
float32x2_t t1
= vld1_f32 (&__erfcf_data.tab[vgetq_lane_u32 (i, 1) - Off].erfc);
float32x2_t t2
= vld1_f32 (&__erfcf_data.tab[vgetq_lane_u32 (i, 2) - Off].erfc);
float32x2_t t3
= vld1_f32 (&__erfcf_data.tab[vgetq_lane_u32 (i, 3) - Off].erfc);
float32x4_t e1 = vcombine_f32 (t0, t1);
float32x4_t e2 = vcombine_f32 (t2, t3);
e.erfc = vuzp1q_f32 (e1, e2);
e.scale = vuzp2q_f32 (e1, e2);
return e;
}
#if WANT_SIMD_EXCEPT
static float32x4_t VPCS_ATTR NOINLINE
special_case (float32x4_t x, float32x4_t y, uint32x4_t cmp)
{
return v_call_f32 (erfcf, x, y, cmp);
}
#endif
/* Optimized single-precision vector erfcf(x).
Approximation based on series expansion near x rounded to
nearest multiple of 1/64.
Let d = x - r, and scale = 2 / sqrt(pi) * exp(-r^2). For x near r,
erfc(x) ~ erfc(r) - scale * d * poly(r, d), with
poly(r, d) = 1 - r d + (2/3 r^2 - 1/3) d^2 - r (1/3 r^2 - 1/2) d^3
+ (2/15 r^4 - 2/5 r^2 + 1/10) d^4
Values of erfc(r) and scale are read from lookup tables. Stored values
are scaled to avoid hitting the subnormal range.
Note that for x < 0, erfc(x) = 2.0 - erfc(-x).
Maximum error: 1.63 ULP (~1.0 ULP for x < 0.0).
_ZGVnN4v_erfcf(0x1.1dbf7ap+3) got 0x1.f51212p-120
want 0x1.f51216p-120. */
VPCS_ATTR
float32x4_t NOINLINE V_NAME_F1 (erfc) (float32x4_t x)
{
const struct data *dat = ptr_barrier (&data);
#if WANT_SIMD_EXCEPT
/* |x| < 2^-62. Avoid fabs by left-shifting by 1. */
uint32x4_t ix = vreinterpretq_u32_f32 (x);
uint32x4_t cmp = vcltq_u32 (vaddq_u32 (ix, ix), v_u32 (TinyBound));
/* x >= ~9.19 (into subnormal case and uflow case). Comparison is done in
integer domain to avoid raising exceptions in presence of nans. */
uint32x4_t uflow = vcgeq_s32 (vreinterpretq_s32_f32 (x),
vreinterpretq_s32_f32 (dat->uflow_bound));
cmp = vorrq_u32 (cmp, uflow);
float32x4_t xm = x;
/* If any lanes are special, mask them with 0 and retain a copy of x to allow
special case handler to fix special lanes later. This is only necessary if
fenv exceptions are to be triggered correctly. */
if (__glibc_unlikely (v_any_u32 (cmp)))
x = v_zerofy_f32 (x, cmp);
#endif
float32x4_t a = vabsq_f32 (x);
a = vminq_f32 (a, dat->max);
/* Lookup erfc(r) and scale(r) in tables, e.g. set erfc(r) to 0 and scale to
2/sqrt(pi), when x reduced to r = 0. */
float32x4_t shift = dat->shift;
float32x4_t z = vaddq_f32 (a, shift);
/* Clamp index to a range of 644. A naive approach would use a subtract and
min. Instead we offset the table address and the index, then use a
saturating add. */
uint32x4_t i = vqaddq_u32 (vreinterpretq_u32_f32 (z), dat->offset);
struct entry e = lookup (i);
/* erfc(x) ~ erfc(r) - scale * d * poly(r, d). */
float32x4_t r = vsubq_f32 (z, shift);
float32x4_t d = vsubq_f32 (a, r);
float32x4_t d2 = vmulq_f32 (d, d);
float32x4_t r2 = vmulq_f32 (r, r);
float32x4_t p1 = r;
float32x4_t coeffs = vld1q_f32 (dat->coeffs);
float32x4_t p2 = vfmsq_laneq_f32 (dat->third, r2, coeffs, 1);
float32x4_t p3
= vmulq_f32 (r, vfmaq_laneq_f32 (v_f32 (-0.5), r2, coeffs, 0));
float32x4_t p4 = vfmaq_laneq_f32 (dat->two_over_five, r2, coeffs, 2);
p4 = vfmsq_f32 (dat->tenth, r2, p4);
float32x4_t y = vfmaq_f32 (p3, d, p4);
y = vfmaq_f32 (p2, d, y);
y = vfmaq_f32 (p1, d, y);
y = vfmsq_f32 (e.erfc, e.scale, vfmsq_f32 (d, d2, y));
/* Offset equals 2.0f if sign, else 0.0f. */
uint32x4_t sign = vshrq_n_u32 (vreinterpretq_u32_f32 (x), 31);
float32x4_t off = vreinterpretq_f32_u32 (vshlq_n_u32 (sign, 30));
/* Copy sign and scale back in a single fma. Since the bit patterns do not
overlap, then logical or and addition are equivalent here. */
float32x4_t fac = vreinterpretq_f32_u32 (
vsraq_n_u32 (vshlq_n_u32 (sign, 31), dat->table_scale, 1));
#if WANT_SIMD_EXCEPT
if (__glibc_unlikely (v_any_u32 (cmp)))
return special_case (xm, vfmaq_f32 (off, fac, y), cmp);
#endif
return vfmaq_f32 (off, fac, y);
}
libmvec_hidden_def (V_NAME_F1 (erfc))
HALF_WIDTH_ALIAS_F1 (erfc)