glibc/sysdeps/ieee754/dbl-64/e_acosh.c

420 lines
16 KiB
C

/* Correctly-rounded inverse hyperbolic cosine function for the
binary64 floating point format.
Copyright (c) 2023-2026 Alexei Sibidanov.
The original version of this file was copied from the CORE-MATH
project (file src/binary64/acosh/acosh.c, revision 6736002f).
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE. */
/* References:
[1] Tight and rigourous error bounds for basic building blocks of
double-word arithmetic, by Mioara Joldeş, Jean-Michel Muller,
and Valentina Popescu, ACM Transactions on Mathematical Software,
44(2), 2017.
[2] Formalization of double-word arithmetic, and comments on ”Tight and
rigorous error bounds for basic building blocks of double-word
arithmetic”, Jean-Michel Muller, Laurence Rideau,
https://hal.science/hal-02972245v2, 2021.
*/
#include <array_length.h>
#include <stdint.h>
#include <math.h>
#include <libm-alias-finite.h>
#include "math_config.h"
#include "s_asincosh_data.h"
#include "ddcoremath.h"
static double __attribute__ ((noinline)) as_acosh_refine (double, double);
static double __attribute__ ((noinline))
as_acosh_one (double x, double sh, double sl)
{
static const double ch[][2]
= { { -0x1.5555555555555p-4, -0x1.5555555554af1p-58 },
{ 0x1.3333333333333p-6, 0x1.9999998933f0ep-61 },
{ -0x1.6db6db6db6db7p-8, 0x1.24929b16ec6b7p-63 },
{ 0x1.f1c71c71c71c7p-10, 0x1.c56d45e265e2cp-66 },
{ -0x1.6e8ba2e8ba2e9p-11, 0x1.6d50ce7188d3dp-65 },
{ 0x1.1c4ec4ec4ec43p-12, 0x1.c6791d1cf399ap-66 },
{ -0x1.c99999999914fp-14, 0x1.ee0d9408a2e2ap-68 },
{ 0x1.7a878787648e2p-15, -0x1.1cea281e08012p-69 },
{ -0x1.3fde50d0cb4b9p-16, 0x1.0335101403d9dp-72 },
{ 0x1.12ef3bf8a0a74p-17, 0x1.f9c6b51787043p-80 } };
static const double cl[]
= { -0x1.df3b9d1296ea9p-19, 0x1.a681d7d2298ebp-20,
-0x1.77ead7b1ca449p-21, 0x1.4edd2ddb3721fp-22,
-0x1.1bf173531ee23p-23, 0x1.613229230e255p-25 };
double y2
= x
* (cl[0]
+ x
* (cl[1]
+ x * (cl[2] + x * (cl[3] + x * (cl[4] + x * (cl[5]))))));
double y1 = polydd3 (x, 0, 10, ch, &y2);
y1 = mulddd (y1, y2, x, &y2);
double y0 = fasttwosum (1, y1, &y1);
y1 += y2;
y0 = muldd_acc2 (y0, y1, sh, sl, &y1);
return y0 + y1;
}
double
__ieee754_acosh (double x)
{
uint64_t ix = asuint64 (x);
if (__glibc_unlikely (ix >= UINT64_C (0x7ff0000000000000)))
{ // x<0 or NaN/Inf
uint64_t aix = ix << 1;
if (ix == UINT64_C (0x7ff0000000000000)
|| aix > (UINT64_C (0x7ff) << 53))
return x + x; /* +inf or nan */
return __math_invalid (x);
}
if (__glibc_unlikely (ix <= UINT64_C (0x3ff0000000000000)))
{
if (ix == UINT64_C (0x3ff0000000000000))
return 0;
return __math_invalid (x);
}
double g;
int off = 0x3fe;
uint64_t t = ix;
if (ix < UINT64_C (0x3ff1e83e425aee63)) // 0 <= x < 0x1.1e83e425aee63p+0
{
double z = x - 1;
double iz = (-0.25) / z, zt = 2 * z;
double sh = sqrt (zt),
sl = fma (sh, sh, -zt) * (sh * iz);
static const double cl[] = {
-0x1.5555555555555p-4, 0x1.3333333332f95p-6, -0x1.6db6db6d5534cp-8,
0x1.f1c71c1e04356p-10, -0x1.6e8b8e3e40d58p-11, 0x1.1c4ba825ac4fep-12,
-0x1.c9045534e6d9ep-14, 0x1.71fedae26a76bp-15, -0x1.f1f4f8cc65342p-17
};
double z2 = z * z, z4 = z2 * z2,
ds = fma (
sh * z,
cl[0]
+ z
* (((cl[1] + z * cl[2]) + z2 * (cl[3] + z * cl[4]))
+ z4
* ((cl[5] + z * cl[6])
+ z2 * (cl[7] + z * cl[8]))),
sl);
double eps = ds * 0x1.fcp-51 - 0x1p-104 * sh;
double lb = sh + (ds - eps), ub = sh + (ds + eps);
if (lb == ub)
return lb;
return as_acosh_one (z, sh, sl);
}
else if (__glibc_likely (ix < UINT64_C (0x405bf00000000000)))
{
// 0x1.1e83e425aee63p+0 <= x < 0x1.bfp+6
off = 0x3ff;
double x2h = x * x, wh = x2h - 1, wl = fma (x, x, -x2h);
double sh = sqrt (wh), ish = 0.5 / wh,
sl = (wl - fma (sh, sh, -wh)) * (sh * ish);
double tl, th = fasttwosum (x, sh, &tl);
tl += sl;
t = asuint64 (th);
g = tl / th;
}
else if (ix < UINT64_C (0x4087100000000000))
{
// 0x1.bfp+6 <= x < 0x1.71p+9
static const double cl[]
= { 0x1.5c4b6148816e2p-66, -0x1.000000000005cp-2,
-0x1.7fffffebf3e6cp-4, -0x1.aab6691f2bae7p-5 };
double z = 1 / (x * x);
g = cl[0] + z * (cl[1] + z * (cl[2] + z * cl[3]));
}
else if (ix < UINT64_C (0x40e0100000000000))
{
// 0x1.71p+9 <= x < 0x1.01p+15
static const double cl[]
= { -0x1.7f77c8429c6c6p-67, -0x1.ffffffffff214p-3,
-0x1.8000268641bfep-4 };
double z = 1 / (x * x);
g = cl[0] + z * (cl[1] + z * cl[2]);
}
else if (ix < UINT64_C (0x41ea000000000000))
{
// 0x1.01p+15 <= x < 0x1.ap+31
static const double cl[]
= { 0x1.7a0ed2effdd1p-67, -0x1.000000017d048p-2 };
double z = 1 / (x * x);
g = cl[0] + z * cl[1];
}
else
{
// 0x1.ap+31 <= x
g = 0;
}
int ex = t >> 52, e = ex - off;
t &= ~UINT64_C (0) >> 12;
double ed = e;
uint64_t i = t >> (52 - 5);
int64_t d = t & (~UINT64_C (0) >> 17);
uint64_t j
= (t + ((uint64_t) B[i].c0 << 33) + ((int64_t) B[i].c1 * (d >> 16)))
>> (52 - 10);
t |= UINT64_C (0x3ff) << 52;
int i1 = j >> 5, i2 = j & 0x1f;
double r = r1[i1] * r2[i2], dx = fma (r, asdouble(t), -1), dx2 = dx * dx;
double f
= dx2 * ((c[0] + dx * c[1]) + dx2 * ((c[2] + dx * c[3]) + dx2 * c[4]));
const double l2h = 0x1.62e42fefa38p-1, l2l = 0x1.ef35793c7673p-45;
double lh = (l1[i1][1] + l2[i2][1]) + l2h * ed, ll = dx + l2l * ed;
ll += g;
ll += l1[i1][0] + l2[i2][0];
ll += f;
double eps = 2.8e-19;
double lb = lh + (ll - eps), ub = lh + (ll + eps);
if (__glibc_likely (lb == ub))
return lb;
return as_acosh_refine (x, 0x1.71547652b82fep+0 * lb);
}
libm_alias_finite (__ieee754_acosh, __acosh)
static __attribute__ ((noinline)) double
as_acosh_database (double x, double f)
{
static const double db[][3] = {
{ 0x1.5bff041b260fep+0, 0x1.a6031cd5f93bap-1, 0x1p-55 },
{ 0x1.9efdca62b700ap+0, 0x1.104b648f113a1p+0, 0x1p-54 },
{ 0x1.9efdca62b700ap+0, 0x1.104b648f113a1p+0, 0x1p-54 },
{ 0x1.a5bf3acfde4b2p+0, 0x1.1585720f35cd9p+0, -0x1p-54 },
{ 0x1.d888dd2101d93p+1, 0x1.faf8b7a12cf9fp+0, -0x1p-54 },
{ 0x1.0151def34c2b8p+5, 0x1.0a7b6e3fed72p+2, 0x1p-52 },
{ 0x1.45ea160ddc71fp+7, 0x1.725811dcf6782p+2, 0x1p-52 },
{ 0x1.13570067acc9fp+9, 0x1.c04672343dccfp+2, -0x1p-52 },
{ 0x1.2a686e4b567cep+10, 0x1.f1c928e7f1e65p+2, 0x1p-52 },
{ 0x1.cb62eec26bd78p+15, 0x1.759a2ad4c4d56p+3, 0x1p-51 },
};
int a = 0, b = array_length (db) - 1, m = (a + b) / 2;
while (a <= b)
{ /* binary search */
if (db[m][0] < x)
a = m + 1;
else if (db[m][0] == x)
{
f = db[m][1] + db[m][2];
break;
}
else
b = m - 1;
m = (a + b) / 2;
}
return f;
}
static double
as_acosh_refine (double x, double a)
{
static const double t1[]
= { 0x1p+0, 0x1.ea4afap-1, 0x1.d5818ep-1, 0x1.c199bep-1,
0x1.ae89f98p-1, 0x1.9c4918p-1, 0x1.8ace54p-1, 0x1.7a1147p-1,
0x1.6a09e68p-1, 0x1.5ab07ep-1, 0x1.4bfdad8p-1, 0x1.3dea65p-1,
0x1.306fe08p-1, 0x1.2387a7p-1, 0x1.172b84p-1, 0x1.0b5587p-1,
0x1p-1 };
static const double t2[]
= { 0x1p+0, 0x1.fe9d968p-1, 0x1.fd3c228p-1, 0x1.fbdba38p-1,
0x1.fa7c18p-1, 0x1.f91d8p-1, 0x1.f7bfdbp-1, 0x1.f663278p-1,
0x1.f507658p-1, 0x1.f3ac948p-1, 0x1.f252b38p-1, 0x1.f0f9c2p-1,
0x1.efa1bfp-1, 0x1.ee4aaap-1, 0x1.ecf483p-1, 0x1.eb9f488p-1 };
static const double t3[]
= { 0x1p+0, 0x1.ffe9d2p-1, 0x1.ffd3a58p-1, 0x1.ffbd798p-1,
0x1.ffa74e8p-1, 0x1.ff91248p-1, 0x1.ff7afb8p-1, 0x1.ff64d38p-1,
0x1.ff4eac8p-1, 0x1.ff38868p-1, 0x1.ff22618p-1, 0x1.ff0c3dp-1,
0x1.fef61ap-1, 0x1.fedff78p-1, 0x1.fec9d68p-1, 0x1.feb3b6p-1 };
static const double t4[]
= { 0x1p+0, 0x1.fffe9dp-1, 0x1.fffd3ap-1, 0x1.fffbd78p-1,
0x1.fffa748p-1, 0x1.fff9118p-1, 0x1.fff7ae8p-1, 0x1.fff64cp-1,
0x1.fff4e9p-1, 0x1.fff386p-1, 0x1.fff2238p-1, 0x1.fff0c08p-1,
0x1.ffef5d8p-1, 0x1.ffedfa8p-1, 0x1.ffec98p-1, 0x1.ffeb35p-1 };
static const double LL[4][17][3] = {
{
{ 0x0p+0, 0x0p+0, 0x0p+0 },
{ 0x1.62e432b24p-6, -0x1.745af34bb54b8p-42, -0x1.17e3ec05cde7p-97 },
{ 0x1.62e42e4a8p-5, 0x1.111a4eadf312p-44, 0x1.cff3027abb119p-93 },
{ 0x1.0a2b233f1p-4, -0x1.88ac4ec78af8p-42, 0x1.4fa087ca75dfdp-93 },
{ 0x1.62e43056cp-4, 0x1.6bd65e8b0b7p-46, -0x1.b18e160362c24p-95 },
{ 0x1.bb9d3cbd6p-4, 0x1.de14aa55ec2bp-42, -0x1.c6ac3f1862a6bp-94 },
{ 0x1.0a2b244dap-3, 0x1.94def487fea7p-42, -0x1.dead1a4581acfp-94 },
{ 0x1.3687aa9b78p-3, 0x1.9cec9a50db22p-43, 0x1.34a70684f8e0ep-93 },
{ 0x1.62e42fabap-3, -0x1.d69047a3aebp-44, -0x1.4e061f79144e2p-95 },
{ 0x1.8f40b56d28p-3, 0x1.de7d755fd2e2p-42, 0x1.bdc7ecf001489p-94 },
{ 0x1.bb9d3b61fp-3, 0x1.c14f1445b12p-46, 0x1.a1d78cbdc5b58p-93 },
{ 0x1.e7f9c11f08p-3, -0x1.6e3e0000dae7p-43, 0x1.6a4559fadde98p-94 },
{ 0x1.0a2b242ec4p-2, 0x1.bb7cf852a5fe8p-42, 0x1.a6aef11ee43bdp-93 },
{ 0x1.205966c764p-2, 0x1.ad3a5f214294p-45, 0x1.5cc344fa10652p-93 },
{ 0x1.3687a98aacp-2, 0x1.1623671842fp-45, -0x1.0b428fe1f9e43p-94 },
{ 0x1.4cb5ec93f4p-2, 0x1.3d50980ea513p-42, 0x1.67f0ea083b1c4p-93 },
{ 0x1.62e42fefa4p-2, -0x1.8432a1b0e264p-44, 0x1.803f2f6af40f3p-93 },
},
{
{ 0x0p+0, 0x0p+0, 0x0p+0 },
{ 0x1.62e462b4p-10, 0x1.061d003b97318p-42, 0x1.d7faee66a2e1ep-93 },
{ 0x1.62e44c92p-9, 0x1.95a7bff5e239p-42, -0x1.f7e788a87135p-95 },
{ 0x1.0a2b1e33p-8, 0x1.2a3a1a65aa3ap-43, -0x1.54599c9605442p-93 },
{ 0x1.62e4367cp-8, -0x1.4a995b6d9ddcp-45, -0x1.56bb79b254f33p-100 },
{ 0x1.bb9d449ap-8, 0x1.8a119c42e9bcp-42, -0x1.8ecf7d8d661f1p-93 },
{ 0x1.0a2b1f19p-7, 0x1.8863771bd10a8p-42, 0x1.e9731de7f0155p-94 },
{ 0x1.3687ad11p-7, 0x1.e026a347ca1c8p-42, 0x1.fadc62522444dp-97 },
{ 0x1.62e436f28p-7, 0x1.25b84f71b70b8p-42, -0x1.fcb3f98612d27p-96 },
{ 0x1.8f40b7b38p-7, -0x1.62a0a4fd4758p-43, 0x1.3cb3c35d9f6a1p-93 },
{ 0x1.bb9d3abbp-7, -0x1.0ec48f94d786p-42, -0x1.6b47d410e4cc7p-93 },
{ 0x1.e7f9bb23p-7, 0x1.e4415cbc97ap-43, -0x1.3729fdb677231p-93 },
{ 0x1.0a2b22478p-6, -0x1.cb73f4505b03p-42, -0x1.1b3b3a3bc370ap-93 },
{ 0x1.2059691e8p-6, -0x1.abcc3412f264p-43, -0x1.fe6e998e48673p-95 },
{ 0x1.3687a768p-6, -0x1.43901e5c97a9p-42, 0x1.b54cdd52a5d88p-96 },
{ 0x1.4cb5eb5d8p-6, -0x1.8f106f00f13b8p-42, -0x1.8f793f5fce148p-93 },
{ 0x1.62e432b24p-6, -0x1.745af34bb54b8p-42, -0x1.17e3ec05cde7p-97 },
},
{
{ 0x0p+0, 0x0p+0, 0x0p+0 },
{ 0x1.62e7bp-14, -0x1.868625640a68p-44, -0x1.34bf0db910f65p-93 },
{ 0x1.62e35f6p-13, -0x1.2ee3d96b696ap-43, 0x1.a2948cd558655p-94 },
{ 0x1.0a2b4b2p-12, 0x1.53edbcf1165p-47, -0x1.cfc26ccf6d0e4p-97 },
{ 0x1.62e4be1p-12, 0x1.783e334614p-52, -0x1.04b96da30e63ap-93 },
{ 0x1.bb9e085p-12, -0x1.60785f20acb2p-43, -0x1.f33369bf7dff1p-96 },
{ 0x1.0a2b94dp-11, 0x1.fd4b3a273353p-42, -0x1.685a35575eff1p-96 },
{ 0x1.368810f8p-11, 0x1.7ded26dc813p-47, -0x1.4c4d1abca79bfp-96 },
{ 0x1.62e47878p-11, 0x1.7d2bee9a1f63p-42, 0x1.860233b7ad13p-93 },
{ 0x1.8f40cb48p-11, -0x1.af034eaf471cp-42, 0x1.ae748822d57b7p-94 },
{ 0x1.bb9d094p-11, -0x1.7a223013a20fp-42, -0x1.1e499087075b6p-93 },
{ 0x1.e7fa32c8p-11, -0x1.b2e67b1b59bdp-43, -0x1.54a41eda30fa6p-93 },
{ 0x1.0a2b237p-10, -0x1.7ad97ff4ac7ap-44, 0x1.f932da91371ddp-93 },
{ 0x1.2059a338p-10, -0x1.96422d90df4p-44, -0x1.90800fbbf2ed3p-94 },
{ 0x1.36879824p-10, 0x1.0f9054001812p-44, 0x1.9567e01e48f9ap-93 },
{ 0x1.4cb602cp-10, -0x1.0d709a5ec0b5p-43, 0x1.253dfd44635d2p-94 },
{ 0x1.62e462b4p-10, 0x1.061d003b97318p-42, 0x1.d7faee66a2e1ep-93 },
},
{
{ 0x0p+0, 0x0p+0, 0x0p+0 },
{ 0x1.63007cp-18, -0x1.db0e38e5aaaap-43, 0x1.259a7b94815b9p-93 },
{ 0x1.6300f6p-17, 0x1.2b1c75580438p-44, 0x1.78cabba01e3e4p-93 },
{ 0x1.0a2115p-16, -0x1.5ff223730759p-42, 0x1.8074feacfe49dp-95 },
{ 0x1.62e1ecp-16, -0x1.85d6f6487ce4p-45, 0x1.05485074b9276p-93 },
{ 0x1.bba301p-16, -0x1.af5d58a7c921p-43, -0x1.30a8c0fd2ff5fp-93 },
{ 0x1.0a32298p-15, 0x1.590faa0883bdp-43, 0x1.95e9bda999947p-93 },
{ 0x1.3682f1p-15, 0x1.f0224376efaf8p-42, -0x1.5843c0db50d1p-93 },
{ 0x1.62e3d8p-15, -0x1.142c13daed4ap-43, 0x1.c68a61183ce87p-93 },
{ 0x1.8f44dd8p-15, -0x1.aa489f399931p-43, 0x1.11c5c376854eap-94 },
{ 0x1.bb9601p-15, 0x1.9904d8b6a3638p-42, 0x1.8c89554493c8fp-93 },
{ 0x1.e7f744p-15, 0x1.5785ddbe7cba8p-42, 0x1.e7ff3cde7d70cp-94 },
{ 0x1.0a2c53p-14, -0x1.6d9e8780d0d5p-43, 0x1.ad9c178106693p-94 },
{ 0x1.205d134p-14, -0x1.214a2e893fccp-43, 0x1.548a9500c9822p-93 },
{ 0x1.3685e28p-14, 0x1.e23588646103p-43, 0x1.2a97b26da2d88p-94 },
{ 0x1.4cb6c18p-14, 0x1.2b7cfcea9e0d8p-42, -0x1.5095048a6b824p-93 },
{ 0x1.62e7bp-14, -0x1.868625640a68p-44, -0x1.34bf0db910f65p-93 },
},
};
static const double ch[][2] = {
{ 0x1p-1, 0x1.24b67ee516e3bp-111 },
{ -0x1p-2, -0x1.932ce43199a8dp-110 },
{ 0x1.5555555555555p-3, 0x1.55540c15cf91fp-57 },
};
static const double cl[3]
= { -0x1p-3, 0x1.9999999a0754fp-4, -0x1.55555555c3157p-4 };
uint64_t ix = asuint64 (x);
double zh, zl;
if (ix < UINT64_C (0x4190000000000000))
{
double x2h = x * x, x2l = fma (x, x, -x2h);
double wl, wh = x2h - 1;
wh = fasttwosum (wh, x2l, &wl);
double sh = sqrt (wh), ish = 0.5 / wh,
sl = (ish * sh) * (wl - fma (sh, sh, -wh));
zh = fasttwosum (x, sh, &zl);
zl += sl;
zh = fasttwosum (zh, zl, &zl);
}
else if (ix < UINT64_C (0x4330000000000000))
{
zh = 2 * x;
zl = -0.5 / x;
}
else
{
zh = x;
zl = 0;
}
uint64_t t = asuint64 (zh);
int ex = t >> 52, e = ex - 0x3ff + (zl == 0.0);
t &= ~UINT64_C (0) >> 12;
t |= UINT64_C (0x3ff) << 52;
double ed = e;
uint64_t v = asuint64 (a - ed + 0x1.00008p+0);
uint64_t i = (v - (UINT64_C (0x3ff) << 52)) >> (52 - 16);
int i1 = (i >> 12) & 0x1f, i2 = (i >> 8) & 0xf, i3 = (i >> 4) & 0xf,
i4 = i & 0xf;
const double l20 = 0x1.62e42fefa38p-2, l21 = 0x1.ef35793c768p-46,
l22 = -0x1.9ff0342542fc3p-91;
double el2 = l22 * ed, el1 = l21 * ed, el0 = l20 * ed;
double L[3];
L[0] = LL[0][i1][0] + LL[1][i2][0] + (LL[2][i3][0] + LL[3][i4][0]);
L[1] = LL[0][i1][1] + LL[1][i2][1] + (LL[2][i3][1] + LL[3][i4][1]);
L[2] = LL[0][i1][2] + LL[1][i2][2] + (LL[2][i3][2] + LL[3][i4][2]);
L[0] += el0;
double t12 = t1[i1] * t2[i2], t34 = t3[i3] * t4[i4];
double th = t12 * t34, tl = fma (t12, t34, -th);
double tf = asdouble (t);
double dh = th * tf, dl = fma (th, tf, -dh);
double sh = tl * tf, sl = fma (tl, tf, -sh);
double xl, xh = fasttwosum (dh - 1, dl, &xl);
if (zl != 0.0)
{
t = asuint64 (zl);
t -= (int64_t) e << 52;
xl += th * asdouble (t);
}
xh = adddd (xh, xl, sh, sl, &xl);
sl = xh * (cl[0] + xh * (cl[1] + xh * cl[2]));
sh = polydd3 (xh, xl, 3, ch, &sl);
sh = muldd_acc2 (xh, xl, sh, sl, &sl);
sh = adddd (sh, sl, el1, el2, &sl);
sh = adddd (sh, sl, L[1], L[2], &sl);
double v2, v0 = fasttwosum (L[0], sh, &v2), v1 = fasttwosum (v2, sl, &v2);
v0 *= 2;
v1 *= 2;
v2 *= 2;
t = asuint64 (v1);
if (__glibc_unlikely (!(t & (~UINT64_C (0) >> 12))))
{
uint64_t w = asuint64 (v2);
if ((w ^ t) >> 63)
t--;
else
t++;
v1 = asdouble (t);
}
uint64_t t0 = asuint64 (v0);
uint64_t er = ((t + 7) & (~UINT64_C (0) >> 12)),
de = ((t0 >> 52) & 0x7ff) - ((t >> 52) & 0x7ff);
double res = v0 + v1;
if (__glibc_unlikely (de > 102 || er < 15))
return as_acosh_database (x, res);
return res;
}