glibc/sysdeps/aarch64/fpu/asinh_advsimd.c

177 lines
6.4 KiB
C

/* Double-precision vector (Advanced SIMD) asinh function
Copyright (C) 2024 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "v_math.h"
#include "poly_advsimd_f64.h"
#define A(i) v_f64 (__v_log_data.poly[i])
#define N (1 << V_LOG_TABLE_BITS)
#define IndexMask (N - 1)
const static struct data
{
float64x2_t poly[18];
uint64x2_t off, huge_bound, abs_mask;
float64x2_t ln2, tiny_bound;
} data = {
.off = V2 (0x3fe6900900000000),
.ln2 = V2 (0x1.62e42fefa39efp-1),
.huge_bound = V2 (0x5fe0000000000000),
.tiny_bound = V2 (0x1p-26),
.abs_mask = V2 (0x7fffffffffffffff),
/* Even terms of polynomial s.t. asinh(x) is approximated by
asinh(x) ~= x + x^3 * (C0 + C1 * x + C2 * x^2 + C3 * x^3 + ...).
Generated using Remez, f = (asinh(sqrt(x)) - sqrt(x))/x^(3/2). */
.poly = { V2 (-0x1.55555555554a7p-3), V2 (0x1.3333333326c7p-4),
V2 (-0x1.6db6db68332e6p-5), V2 (0x1.f1c71b26fb40dp-6),
V2 (-0x1.6e8b8b654a621p-6), V2 (0x1.1c4daa9e67871p-6),
V2 (-0x1.c9871d10885afp-7), V2 (0x1.7a16e8d9d2ecfp-7),
V2 (-0x1.3ddca533e9f54p-7), V2 (0x1.0becef748dafcp-7),
V2 (-0x1.b90c7099dd397p-8), V2 (0x1.541f2bb1ffe51p-8),
V2 (-0x1.d217026a669ecp-9), V2 (0x1.0b5c7977aaf7p-9),
V2 (-0x1.e0f37daef9127p-11), V2 (0x1.388b5fe542a6p-12),
V2 (-0x1.021a48685e287p-14), V2 (0x1.93d4ba83d34dap-18) },
};
static float64x2_t NOINLINE VPCS_ATTR
special_case (float64x2_t x, float64x2_t y, uint64x2_t special)
{
return v_call_f64 (asinh, x, y, special);
}
struct entry
{
float64x2_t invc;
float64x2_t logc;
};
static inline struct entry
lookup (uint64x2_t i)
{
/* Since N is a power of 2, n % N = n & (N - 1). */
struct entry e;
uint64_t i0 = (vgetq_lane_u64 (i, 0) >> (52 - V_LOG_TABLE_BITS)) & IndexMask;
uint64_t i1 = (vgetq_lane_u64 (i, 1) >> (52 - V_LOG_TABLE_BITS)) & IndexMask;
float64x2_t e0 = vld1q_f64 (&__v_log_data.table[i0].invc);
float64x2_t e1 = vld1q_f64 (&__v_log_data.table[i1].invc);
e.invc = vuzp1q_f64 (e0, e1);
e.logc = vuzp2q_f64 (e0, e1);
return e;
}
static inline float64x2_t
log_inline (float64x2_t x, const struct data *d)
{
/* Double-precision vector log, copied from ordinary vector log with some
cosmetic modification and special-cases removed. */
uint64x2_t ix = vreinterpretq_u64_f64 (x);
uint64x2_t tmp = vsubq_u64 (ix, d->off);
int64x2_t k = vshrq_n_s64 (vreinterpretq_s64_u64 (tmp), 52);
uint64x2_t iz
= vsubq_u64 (ix, vandq_u64 (tmp, vdupq_n_u64 (0xfffULL << 52)));
float64x2_t z = vreinterpretq_f64_u64 (iz);
struct entry e = lookup (tmp);
float64x2_t r = vfmaq_f64 (v_f64 (-1.0), z, e.invc);
float64x2_t kd = vcvtq_f64_s64 (k);
float64x2_t hi = vfmaq_f64 (vaddq_f64 (e.logc, r), kd, d->ln2);
float64x2_t r2 = vmulq_f64 (r, r);
float64x2_t y = vfmaq_f64 (A (2), A (3), r);
float64x2_t p = vfmaq_f64 (A (0), A (1), r);
y = vfmaq_f64 (y, A (4), r2);
y = vfmaq_f64 (p, y, r2);
y = vfmaq_f64 (hi, y, r2);
return y;
}
/* Double-precision implementation of vector asinh(x).
asinh is very sensitive around 1, so it is impractical to devise a single
low-cost algorithm which is sufficiently accurate on a wide range of input.
Instead we use two different algorithms:
asinh(x) = sign(x) * log(|x| + sqrt(x^2 + 1) if |x| >= 1
= sign(x) * (|x| + |x|^3 * P(x^2)) otherwise
where log(x) is an optimized log approximation, and P(x) is a polynomial
shared with the scalar routine. The greatest observed error 3.29 ULP, in
|x| >= 1:
__v_asinh(0x1.2cd9d717e2c9bp+0) got 0x1.ffffcfd0e234fp-1
want 0x1.ffffcfd0e2352p-1. */
VPCS_ATTR float64x2_t V_NAME_D1 (asinh) (float64x2_t x)
{
const struct data *d = ptr_barrier (&data);
float64x2_t ax = vabsq_f64 (x);
uint64x2_t iax = vreinterpretq_u64_f64 (ax);
uint64x2_t gt1 = vcgeq_f64 (ax, v_f64 (1));
uint64x2_t special = vcgeq_u64 (iax, d->huge_bound);
#if WANT_SIMD_EXCEPT
uint64x2_t tiny = vcltq_f64 (ax, d->tiny_bound);
special = vorrq_u64 (special, tiny);
#endif
/* Option 1: |x| >= 1.
Compute asinh(x) according by asinh(x) = log(x + sqrt(x^2 + 1)).
If WANT_SIMD_EXCEPT is enabled, sidestep special values, which will
overflow, by setting special lanes to 1. These will be fixed later. */
float64x2_t option_1 = v_f64 (0);
if (__glibc_likely (v_any_u64 (gt1)))
{
#if WANT_SIMD_EXCEPT
float64x2_t xm = v_zerofy_f64 (ax, special);
#else
float64x2_t xm = ax;
#endif
option_1 = log_inline (
vaddq_f64 (xm, vsqrtq_f64 (vfmaq_f64 (v_f64 (1), xm, xm))), d);
}
/* Option 2: |x| < 1.
Compute asinh(x) using a polynomial.
If WANT_SIMD_EXCEPT is enabled, sidestep special lanes, which will
overflow, and tiny lanes, which will underflow, by setting them to 0. They
will be fixed later, either by selecting x or falling back to the scalar
special-case. The largest observed error in this region is 1.47 ULPs:
__v_asinh(0x1.fdfcd00cc1e6ap-1) got 0x1.c1d6bf874019bp-1
want 0x1.c1d6bf874019cp-1. */
float64x2_t option_2 = v_f64 (0);
if (__glibc_likely (v_any_u64 (vceqzq_u64 (gt1))))
{
#if WANT_SIMD_EXCEPT
ax = v_zerofy_f64 (ax, vorrq_u64 (tiny, gt1));
#endif
float64x2_t x2 = vmulq_f64 (ax, ax), x3 = vmulq_f64 (ax, x2),
z2 = vmulq_f64 (x2, x2), z4 = vmulq_f64 (z2, z2),
z8 = vmulq_f64 (z4, z4), z16 = vmulq_f64 (z8, z8);
float64x2_t p = v_estrin_17_f64 (x2, z2, z4, z8, z16, d->poly);
option_2 = vfmaq_f64 (ax, p, x3);
#if WANT_SIMD_EXCEPT
option_2 = vbslq_f64 (tiny, x, option_2);
#endif
}
/* Choose the right option for each lane. */
float64x2_t y = vbslq_f64 (gt1, option_1, option_2);
/* Copy sign. */
y = vbslq_f64 (d->abs_mask, y, x);
if (__glibc_unlikely (v_any_u64 (special)))
return special_case (x, y, special);
return y;
}