glibc/sysdeps/aarch64/fpu/v_log1p_inline.h

132 lines
5.7 KiB
C

/* Helper for double-precision Advanced SIMD routines which depend on log1p
Copyright (C) 2024-2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#ifndef AARCH64_FPU_V_LOG1P_INLINE_H
#define AARCH64_FPU_V_LOG1P_INLINE_H
#include "v_math.h"
struct v_log1p_data
{
float64x2_t c0, c2, c4, c6, c8, c10, c12, c14, c16;
uint64x2_t hf_rt2_top, one_m_hf_rt2_top, umask;
int64x2_t one_top;
double c1, c3, c5, c7, c9, c11, c13, c15, c17, c18;
double ln2[2];
};
/* Coefficients generated using Remez, deg=20, in [sqrt(2)/2-1, sqrt(2)-1]. */
#define V_LOG1P_CONSTANTS_TABLE \
{ \
.c0 = V2 (-0x1.ffffffffffffbp-2), .c1 = 0x1.55555555551a9p-2, \
.c2 = V2 (-0x1.00000000008e3p-2), .c3 = 0x1.9999999a32797p-3, \
.c4 = V2 (-0x1.555555552fecfp-3), .c5 = 0x1.249248e071e5ap-3, \
.c6 = V2 (-0x1.ffffff8bf8482p-4), .c7 = 0x1.c71c8f07da57ap-4, \
.c8 = V2 (-0x1.9999ca4ccb617p-4), .c9 = 0x1.7459ad2e1dfa3p-4, \
.c10 = V2 (-0x1.554d2680a3ff2p-4), .c11 = 0x1.3b4c54d487455p-4, \
.c12 = V2 (-0x1.2548a9ffe80e6p-4), .c13 = 0x1.0f389a24b2e07p-4, \
.c14 = V2 (-0x1.eee4db15db335p-5), .c15 = 0x1.e95b494d4a5ddp-5, \
.c16 = V2 (-0x1.15fdf07cb7c73p-4), .c17 = 0x1.0310b70800fcfp-4, \
.c18 = -0x1.cfa7385bdb37ep-6, \
.ln2 = { 0x1.62e42fefa3800p-1, 0x1.ef35793c76730p-45 }, \
.hf_rt2_top = V2 (0x3fe6a09e00000000), \
.one_m_hf_rt2_top = V2 (0x00095f6200000000), \
.umask = V2 (0x000fffff00000000), .one_top = V2 (0x3ff) \
}
#define BottomMask v_u64 (0xffffffff)
static inline float64x2_t
eval_poly (float64x2_t m, float64x2_t m2, const struct v_log1p_data *d)
{
/* Approximate log(1+m) on [-0.25, 0.5] using pairwise Horner. */
float64x2_t c13 = vld1q_f64 (&d->c1);
float64x2_t c57 = vld1q_f64 (&d->c5);
float64x2_t c911 = vld1q_f64 (&d->c9);
float64x2_t c1315 = vld1q_f64 (&d->c13);
float64x2_t c1718 = vld1q_f64 (&d->c17);
float64x2_t p1617 = vfmaq_laneq_f64 (d->c16, m, c1718, 0);
float64x2_t p1415 = vfmaq_laneq_f64 (d->c14, m, c1315, 1);
float64x2_t p1213 = vfmaq_laneq_f64 (d->c12, m, c1315, 0);
float64x2_t p1011 = vfmaq_laneq_f64 (d->c10, m, c911, 1);
float64x2_t p89 = vfmaq_laneq_f64 (d->c8, m, c911, 0);
float64x2_t p67 = vfmaq_laneq_f64 (d->c6, m, c57, 1);
float64x2_t p45 = vfmaq_laneq_f64 (d->c4, m, c57, 0);
float64x2_t p23 = vfmaq_laneq_f64 (d->c2, m, c13, 1);
float64x2_t p01 = vfmaq_laneq_f64 (d->c0, m, c13, 0);
float64x2_t p = vfmaq_laneq_f64 (p1617, m2, c1718, 1);
p = vfmaq_f64 (p1415, m2, p);
p = vfmaq_f64 (p1213, m2, p);
p = vfmaq_f64 (p1011, m2, p);
p = vfmaq_f64 (p89, m2, p);
p = vfmaq_f64 (p67, m2, p);
p = vfmaq_f64 (p45, m2, p);
p = vfmaq_f64 (p23, m2, p);
return vfmaq_f64 (p01, m2, p);
}
static inline float64x2_t
log1p_inline (float64x2_t x, const struct v_log1p_data *d)
{
/* Helper for calculating log(x + 1):
- No special-case handling - this should be dealt with by the caller.
- Optionally simulate the shortcut for k=0, used in the scalar routine,
using v_sel, for improved accuracy when the argument to log1p is close
to 0. This feature is enabled by defining WANT_V_LOG1P_K0_SHORTCUT as 1
in the source of the caller before including this file. */
float64x2_t m = vaddq_f64 (x, v_f64 (1.0));
uint64x2_t mi = vreinterpretq_u64_f64 (m);
uint64x2_t u = vaddq_u64 (mi, d->one_m_hf_rt2_top);
int64x2_t ki
= vsubq_s64 (vreinterpretq_s64_u64 (vshrq_n_u64 (u, 52)), d->one_top);
float64x2_t k = vcvtq_f64_s64 (ki);
/* Reduce x to f in [sqrt(2)/2, sqrt(2)]. */
uint64x2_t utop = vaddq_u64 (vandq_u64 (u, d->umask), d->hf_rt2_top);
uint64x2_t u_red = vorrq_u64 (utop, vandq_u64 (mi, BottomMask));
float64x2_t f = vsubq_f64 (vreinterpretq_f64_u64 (u_red), v_f64 (1.0));
/* Correction term c/m. */
float64x2_t cm = vdivq_f64 (vsubq_f64 (x, vsubq_f64 (m, v_f64 (1.0))), m);
#ifndef WANT_V_LOG1P_K0_SHORTCUT
# error \
"Cannot use v_log1p_inline.h without specifying whether you need the k0 shortcut for greater accuracy close to 0"
#elif WANT_V_LOG1P_K0_SHORTCUT
/* Shortcut if k is 0 - set correction term to 0 and f to x. The result is
that the approximation is solely the polynomial. */
uint64x2_t k0 = vceqzq_f64 (k);
cm = v_zerofy_f64 (cm, k0);
f = vbslq_f64 (k0, x, f);
#endif
/* Approximate log1p(f) on the reduced input using a polynomial. */
float64x2_t f2 = vmulq_f64 (f, f);
float64x2_t p = eval_poly (f, f2, d);
/* Assemble log1p(x) = k * log2 + log1p(f) + c/m. */
float64x2_t ln2 = vld1q_f64 (&d->ln2[0]);
float64x2_t ylo = vfmaq_laneq_f64 (cm, k, ln2, 1);
float64x2_t yhi = vfmaq_laneq_f64 (f, k, ln2, 0);
return vfmaq_f64 (vaddq_f64 (ylo, yhi), f2, p);
}
#endif