glibc/sysdeps/aarch64/fpu/log10_sve.c

102 lines
3.7 KiB
C

/* Double-precision vector (SVE) log10 function
Copyright (C) 2023-2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "sv_math.h"
#include "poly_sve_f64.h"
#define Min 0x0010000000000000
#define Max 0x7ff0000000000000
#define Thres 0x7fe0000000000000 /* Max - Min. */
#define N (1 << V_LOG10_TABLE_BITS)
static const struct data
{
double c0, c2;
double c1, c3;
double invln10, log10_2;
double c4;
uint64_t off;
} data = {
.c0 = -0x1.bcb7b1526e506p-3,
.c1 = 0x1.287a7636be1d1p-3,
.c2 = -0x1.bcb7b158af938p-4,
.c3 = 0x1.63c78734e6d07p-4,
.c4 = -0x1.287461742fee4p-4,
.invln10 = 0x1.bcb7b1526e50ep-2,
.log10_2 = 0x1.34413509f79ffp-2,
.off = 0x3fe6900900000000,
};
static svfloat64_t NOINLINE
special_case (svfloat64_t hi, svuint64_t tmp, svfloat64_t y, svfloat64_t r2,
svbool_t special, const struct data *d)
{
svfloat64_t x = svreinterpret_f64 (svadd_x (svptrue_b64 (), tmp, d->off));
return sv_call_f64 (log10, x, svmla_x (svptrue_b64 (), hi, r2, y), special);
}
/* Double-precision SVE log10 routine.
Maximum measured error is 2.46 ulps.
SV_NAME_D1 (log10)(0x1.131956cd4b627p+0) got 0x1.fffbdf6eaa669p-6
want 0x1.fffbdf6eaa667p-6. */
svfloat64_t SV_NAME_D1 (log10) (svfloat64_t x, const svbool_t pg)
{
const struct data *d = ptr_barrier (&data);
svuint64_t ix = svreinterpret_u64 (x);
svbool_t special = svcmpge (pg, svsub_x (pg, ix, Min), Thres);
/* x = 2^k z; where z is in range [Off,2*Off) and exact.
The range is split into N subintervals.
The ith subinterval contains z and c is near its center. */
svuint64_t tmp = svsub_x (pg, ix, d->off);
svuint64_t i = svlsr_x (pg, tmp, 51 - V_LOG10_TABLE_BITS);
i = svand_x (pg, i, (N - 1) << 1);
svfloat64_t k = svcvt_f64_x (pg, svasr_x (pg, svreinterpret_s64 (tmp), 52));
svfloat64_t z = svreinterpret_f64 (
svsub_x (pg, ix, svand_x (pg, tmp, 0xfffULL << 52)));
/* log(x) = k*log(2) + log(c) + log(z/c). */
svfloat64_t invc = svld1_gather_index (pg, &__v_log10_data.table[0].invc, i);
svfloat64_t logc
= svld1_gather_index (pg, &__v_log10_data.table[0].log10c, i);
/* We approximate log(z/c) with a polynomial P(x) ~= log(x + 1):
r = z/c - 1 (we look up precomputed 1/c)
log(z/c) ~= P(r). */
svfloat64_t r = svmad_x (pg, invc, z, -1.0);
/* hi = log(c) + k*log(2). */
svfloat64_t invln10_log10_2 = svld1rq_f64 (svptrue_b64 (), &d->invln10);
svfloat64_t w = svmla_lane_f64 (logc, r, invln10_log10_2, 0);
svfloat64_t hi = svmla_lane_f64 (w, k, invln10_log10_2, 1);
/* y = r2*(A0 + r*A1 + r2*(A2 + r*A3 + r2*A4)) + hi. */
svfloat64_t odd_coeffs = svld1rq_f64 (svptrue_b64 (), &d->c1);
svfloat64_t r2 = svmul_x (svptrue_b64 (), r, r);
svfloat64_t y = svmla_lane_f64 (sv_f64 (d->c2), r, odd_coeffs, 1);
svfloat64_t p = svmla_lane_f64 (sv_f64 (d->c0), r, odd_coeffs, 0);
y = svmla_x (pg, y, r2, d->c4);
y = svmla_x (pg, p, r2, y);
if (__glibc_unlikely (svptest_any (pg, special)))
return special_case (hi, tmp, y, r2, special, d);
return svmla_x (pg, hi, r2, y);
}