mirror of git://sourceware.org/git/glibc.git
101 lines
3.4 KiB
C
101 lines
3.4 KiB
C
/* Single-precision vector (SVE) exp10 function.
|
|
|
|
Copyright (C) 2023-2025 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#include "sv_math.h"
|
|
|
|
/* For x < -Thres, the result is subnormal and not handled correctly by
|
|
FEXPA. */
|
|
#define Thres 37.9
|
|
|
|
static const struct data
|
|
{
|
|
float log2_10_lo, c0, c2, c4;
|
|
float c1, c3, log10_2;
|
|
float shift, log2_10_hi, thres;
|
|
} data = {
|
|
/* Coefficients generated using Remez algorithm with minimisation of relative
|
|
error.
|
|
rel error: 0x1.89dafa3p-24
|
|
abs error: 0x1.167d55p-23 in [-log10(2)/2, log10(2)/2]
|
|
maxerr: 0.52 +0.5 ulp. */
|
|
.c0 = 0x1.26bb16p+1f,
|
|
.c1 = 0x1.5350d2p+1f,
|
|
.c2 = 0x1.04744ap+1f,
|
|
.c3 = 0x1.2d8176p+0f,
|
|
.c4 = 0x1.12b41ap-1f,
|
|
/* 1.5*2^17 + 127, a shift value suitable for FEXPA. */
|
|
.shift = 0x1.803f8p17f,
|
|
.log10_2 = 0x1.a934fp+1,
|
|
.log2_10_hi = 0x1.344136p-2,
|
|
.log2_10_lo = -0x1.ec10cp-27,
|
|
.thres = Thres,
|
|
};
|
|
|
|
static inline svfloat32_t
|
|
sv_exp10f_inline (svfloat32_t x, const svbool_t pg, const struct data *d)
|
|
{
|
|
/* exp10(x) = 2^(n/N) * 10^r = 2^n * (1 + poly (r)),
|
|
with poly(r) in [1/sqrt(2), sqrt(2)] and
|
|
x = r + n * log10(2) / N, with r in [-log10(2)/2N, log10(2)/2N]. */
|
|
|
|
svfloat32_t lane_consts = svld1rq (svptrue_b32 (), &d->log2_10_lo);
|
|
|
|
/* n = round(x/(log10(2)/N)). */
|
|
svfloat32_t shift = sv_f32 (d->shift);
|
|
svfloat32_t z = svmad_x (pg, sv_f32 (d->log10_2), x, shift);
|
|
svfloat32_t n = svsub_x (svptrue_b32 (), z, shift);
|
|
|
|
/* r = x - n*log10(2)/N. */
|
|
svfloat32_t r = svmsb_x (pg, sv_f32 (d->log2_10_hi), n, x);
|
|
r = svmls_lane (r, n, lane_consts, 0);
|
|
|
|
svfloat32_t scale = svexpa (svreinterpret_u32 (z));
|
|
|
|
/* Polynomial evaluation: poly(r) ~ exp10(r)-1. */
|
|
svfloat32_t p12 = svmla_lane (sv_f32 (d->c1), r, lane_consts, 2);
|
|
svfloat32_t p34 = svmla_lane (sv_f32 (d->c3), r, lane_consts, 3);
|
|
svfloat32_t r2 = svmul_x (svptrue_b32 (), r, r);
|
|
svfloat32_t p14 = svmla_x (pg, p12, p34, r2);
|
|
svfloat32_t p0 = svmul_lane (r, lane_consts, 1);
|
|
svfloat32_t poly = svmla_x (pg, p0, r2, p14);
|
|
|
|
return svmla_x (pg, scale, scale, poly);
|
|
}
|
|
|
|
static svfloat32_t NOINLINE
|
|
special_case (svfloat32_t x, svbool_t special, const struct data *d)
|
|
{
|
|
return sv_call_f32 (exp10f, x, sv_exp10f_inline (x, svptrue_b32 (), d),
|
|
special);
|
|
}
|
|
|
|
/* Single-precision SVE exp10f routine. Implements the same algorithm
|
|
as AdvSIMD exp10f.
|
|
Worst case error is 1.02 ULPs.
|
|
_ZGVsMxv_exp10f(-0x1.040488p-4) got 0x1.ba5f9ep-1
|
|
want 0x1.ba5f9cp-1. */
|
|
svfloat32_t SV_NAME_F1 (exp10) (svfloat32_t x, const svbool_t pg)
|
|
{
|
|
const struct data *d = ptr_barrier (&data);
|
|
svbool_t special = svacgt (pg, x, d->thres);
|
|
if (__glibc_unlikely (svptest_any (special, special)))
|
|
return special_case (x, special, d);
|
|
return sv_exp10f_inline (x, pg, d);
|
|
}
|