mirror of git://sourceware.org/git/glibc.git
Add:
int pthread_rwlock_clockrdlock (pthread_rwlock_t *rwlock,
clockid_t clockid,
const struct timespec *abstime)
and:
int pthread_rwlock_clockwrlock (pthread_rwlock_t *rwlock,
clockid_t clockid,
const struct timespec *abstime)
which behave like pthread_rwlock_timedrdlock and
pthread_rwlock_timedwrlock respectively, except they always measure
abstime against the supplied clockid. The functions currently support
CLOCK_REALTIME and CLOCK_MONOTONIC and return EINVAL if any other
clock is specified.
* sysdeps/nptl/pthread.h: Add pthread_rwlock_clockrdlock and
pthread_wrlock_clockwrlock.
* nptl/Makefile: Build pthread_rwlock_clockrdlock.c and
pthread_rwlock_clockwrlock.c.
* nptl/pthread_rwlock_clockrdlock.c: Implement
pthread_rwlock_clockrdlock.
* nptl/pthread_rwlock_clockwrlock.c: Implement
pthread_rwlock_clockwrlock.
* nptl/pthread_rwlock_common.c (__pthread_rwlock_rdlock_full): Add
clockid parameter and verify that it indicates a supported clock on
entry so that we fail even if it doesn't end up being used. Pass
that clock on to futex_abstimed_wait when necessary.
(__pthread_rwlock_wrlock_full): Likewise.
* nptl/pthread_rwlock_rdlock.c: (__pthread_rwlock_rdlock): Pass
CLOCK_REALTIME to __pthread_rwlock_rdlock_full even though it won't
be used because there's no timeout.
* nptl/pthread_rwlock_wrlock.c (__pthread_rwlock_wrlock): Pass
CLOCK_REALTIME to __pthread_rwlock_wrlock_full even though it won't
be used because there is no timeout.
* nptl/pthread_rwlock_timedrdlock.c (pthread_rwlock_timedrdlock):
Pass CLOCK_REALTIME to __pthread_rwlock_rdlock_full since abstime
uses that clock.
* nptl/pthread_rwlock_timedwrlock.c (pthread_rwlock_timedwrlock):
Pass CLOCK_REALTIME to __pthread_rwlock_wrlock_full since abstime
uses that clock.
* sysdeps/unix/sysv/linux/aarch64/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/alpha/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/arm/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/csky/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/hppa/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/i386/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/ia64/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/m68k/coldfire/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/m68k/m680x0/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/microblaze/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/mips/mips32/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/mips/mips64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/nios2/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc32/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/be/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/le/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/riscv/rv64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/s390/s390-32/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/s390/s390-64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/sh/libpthread.abilist (GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc32/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/sparc/sparc64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/x86_64/64/libpthread.abilist
(GLIBC_2.30): Likewise.
* sysdeps/unix/sysv/linux/x86_64/x32/libpthread.abilist
(GLIBC_2.30): Likewise.
* nptl/tst-abstime.c (th): Add pthread_rwlock_clockrdlock and
pthread_rwlock_clockwrlock timeout tests to match the existing
pthread_rwlock_timedrdloock and pthread_rwlock_timedwrlock tests.
* nptl/tst-rwlock14.c (do_test): Likewise.
* nptl/tst-rwlock6.c Invent verbose_printf macro, and use for
ancillary output throughout. (tf): Accept thread_args structure so
that rwlock, a clockid and function name can be passed to the
thread. (do_test_clock): Rename from do_test. Accept clockid
parameter to specify test clock. Use the magic clockid value of
CLOCK_USE_TIMEDLOCK to indicate that pthread_rwlock_timedrdlock and
pthread_rwlock_timedwrlock should be tested, otherwise pass the
specified clockid to pthread_rwlock_clockrdlock and
pthread_rwlock_clockwrlock. Use xpthread_create and xpthread_join.
(do_test): Call do_test_clock to test each clockid in turn.
* nptl/tst-rwlock7.c: Likewise.
* nptl/tst-rwlock9.c (writer_thread, reader_thread): Accept
thread_args structure so that the (now int) thread number, the
clockid and the function name can be passed to the thread.
(do_test_clock): Renamed from do_test. Pass the necessary
thread_args when creating the reader and writer threads. Use
xpthread_create and xpthread_join.
(do_test): Call do_test_clock to test each clockid in turn.
* manual/threads.texi: Add documentation for
pthread_rwlock_clockrdlock and pthread_rwlock_clockwrclock.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
|
||
|---|---|---|
| .. | ||
| examples | ||
| Makefile | ||
| README.pretty-printers | ||
| README.tunables | ||
| argp.texi | ||
| arith.texi | ||
| charset.texi | ||
| check-safety.sh | ||
| conf.texi | ||
| contrib.texi | ||
| creature.texi | ||
| crypt.texi | ||
| ctype.texi | ||
| debug.texi | ||
| dir | ||
| errno.texi | ||
| fdl-1.3.texi | ||
| filesys.texi | ||
| freemanuals.texi | ||
| getopt.texi | ||
| header.texi | ||
| install-plain.texi | ||
| install.texi | ||
| intro.texi | ||
| io.texi | ||
| ipc.texi | ||
| job.texi | ||
| lang.texi | ||
| lgpl-2.1.texi | ||
| libc-texinfo.sh | ||
| libc.texinfo | ||
| libcbook.texi | ||
| libdl.texi | ||
| llio.texi | ||
| locale.texi | ||
| macros.texi | ||
| maint.texi | ||
| math.texi | ||
| memory.texi | ||
| message.texi | ||
| nss.texi | ||
| nsswitch.texi | ||
| pattern.texi | ||
| pipe.texi | ||
| platform.texi | ||
| probes.texi | ||
| process.texi | ||
| resource.texi | ||
| search.texi | ||
| setjmp.texi | ||
| signal.texi | ||
| socket.texi | ||
| startup.texi | ||
| stdio-fp.c | ||
| stdio.texi | ||
| string.texi | ||
| summary.pl | ||
| sysinfo.texi | ||
| syslog.texi | ||
| terminal.texi | ||
| texinfo.tex | ||
| texis.awk | ||
| threads.texi | ||
| time.texi | ||
| tsort.awk | ||
| tunables.texi | ||
| users.texi | ||
| xtract-typefun.awk | ||
README.tunables
TUNABLE FRAMEWORK
=================
Tunables is a feature in the GNU C Library that allows application authors and
distribution maintainers to alter the runtime library behaviour to match their
workload.
The tunable framework allows modules within glibc to register variables that
may be tweaked through an environment variable. It aims to enforce a strict
namespace rule to bring consistency to naming of these tunable environment
variables across the project. This document is a guide for glibc developers to
add tunables to the framework.
ADDING A NEW TUNABLE
--------------------
The TOP_NAMESPACE macro is defined by default as 'glibc'. If distributions
intend to add their own tunables, they should do so in a different top
namespace by overriding the TOP_NAMESPACE macro for that tunable. Downstream
implementations are discouraged from using the 'glibc' top namespace for
tunables they don't already have consensus to push upstream.
There are three steps to adding a tunable:
1. Add a tunable to the list and fully specify its properties:
For each tunable you want to add, make an entry in elf/dl-tunables.list. The
format of the file is as follows:
TOP_NAMESPACE {
NAMESPACE1 {
TUNABLE1 {
# tunable attributes, one per line
}
# A tunable with default attributes, i.e. string variable.
TUNABLE2
TUNABLE3 {
# its attributes
}
}
NAMESPACE2 {
...
}
}
The list of allowed attributes are:
- type: Data type. Defaults to STRING. Allowed types are:
INT_32, UINT_64, SIZE_T and STRING. Numeric types may
be in octal or hexadecimal format too.
- minval: Optional minimum acceptable value. For a string type
this is the minimum length of the value.
- maxval: Optional maximum acceptable value. For a string type
this is the maximum length of the value.
- default: Specify an optional default value for the tunable.
- env_alias: An alias environment variable
- security_level: Specify security level of the tunable. Valid values:
SXID_ERASE: (default) Don't read for AT_SECURE binaries and
removed so that child processes can't read it.
SXID_IGNORE: Don't read for AT_SECURE binaries, but retained for
non-AT_SECURE subprocesses.
NONE: Read all the time.
2. Use TUNABLE_GET/TUNABLE_SET to get and set tunables.
3. OPTIONAL: If tunables in a namespace are being used multiple times within a
specific module, set the TUNABLE_NAMESPACE macro to reduce the amount of
typing.
GETTING AND SETTING TUNABLES
----------------------------
When the TUNABLE_NAMESPACE macro is defined, one may get tunables in that
module using the TUNABLE_GET macro as follows:
val = TUNABLE_GET (check, int32_t, TUNABLE_CALLBACK (check_callback))
where 'check' is the tunable name, 'int32_t' is the C type of the tunable and
'check_callback' is the function to call if the tunable got initialized to a
non-default value. The macro returns the value as type 'int32_t'.
The callback function should be defined as follows:
void
TUNABLE_CALLBACK (check_callback) (int32_t *valp)
{
...
}
where it can expect the tunable value to be passed in VALP.
Tunables in the module can be updated using:
TUNABLE_SET (check, int32_t, val)
where 'check' is the tunable name, 'int32_t' is the C type of the tunable and
'val' is a value of same type.
To get and set tunables in a different namespace from that module, use the full
form of the macros as follows:
val = TUNABLE_GET_FULL (glibc, cpu, hwcap_mask, uint64_t, NULL)
TUNABLE_SET_FULL (glibc, cpu, hwcap_mask, uint64_t, val)
where 'glibc' is the top namespace, 'cpu' is the tunable namespace and the
remaining arguments are the same as the short form macros.
When TUNABLE_NAMESPACE is not defined in a module, TUNABLE_GET is equivalent to
TUNABLE_GET_FULL, so you will need to provide full namespace information for
both macros. Likewise for TUNABLE_SET and TUNABLE_SET_FULL.
** IMPORTANT NOTE **
The tunable list is set as read-only after the dynamic linker relocates itself,
so setting tunable values must be limited only to tunables within the dynamic
linker, that too before relocation.
FUTURE WORK
-----------
The framework currently only allows a one-time initialization of variables
through environment variables and in some cases, modification of variables via
an API call. A future goals for this project include:
- Setting system-wide and user-wide defaults for tunables through some
mechanism like a configuration file.
- Allow tweaking of some tunables at runtime