mirror of git://sourceware.org/git/glibc.git
89 lines
3.4 KiB
C
89 lines
3.4 KiB
C
/* Double-precision (Advanced SIMD) tanpi function
|
|
|
|
Copyright (C) 2024 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#include "v_math.h"
|
|
|
|
const static struct v_tanpi_data
|
|
{
|
|
float64x2_t c0, c2, c4, c6, c8, c10, c12;
|
|
double c1, c3, c5, c7, c9, c11, c13, c14;
|
|
} tanpi_data = {
|
|
/* Coefficents for tan(pi * x) computed with fpminimax
|
|
on [ 0x1p-1022 0x1p-2 ]
|
|
approx rel error: 0x1.7eap-55
|
|
approx abs error: 0x1.7eap-55. */
|
|
.c0 = V2 (0x1.921fb54442d18p1), /* pi. */
|
|
.c1 = 0x1.4abbce625be52p3, .c2 = V2 (0x1.466bc6775b0f9p5),
|
|
.c3 = 0x1.45fff9b426f5ep7, .c4 = V2 (0x1.45f4730dbca5cp9),
|
|
.c5 = 0x1.45f3265994f85p11, .c6 = V2 (0x1.45f4234b330cap13),
|
|
.c7 = 0x1.45dca11be79ebp15, .c8 = V2 (0x1.47283fc5eea69p17),
|
|
.c9 = 0x1.3a6d958cdefaep19, .c10 = V2 (0x1.927896baee627p21),
|
|
.c11 = -0x1.89333f6acd922p19, .c12 = V2 (0x1.5d4e912bb8456p27),
|
|
.c13 = -0x1.a854d53ab6874p29, .c14 = 0x1.1b76de7681424p32,
|
|
};
|
|
|
|
/* Approximation for double-precision vector tanpi(x)
|
|
The maximum error is 3.06 ULP:
|
|
_ZGVnN2v_tanpi(0x1.0a4a07dfcca3ep-1) got -0x1.fa30112702c98p+3
|
|
want -0x1.fa30112702c95p+3. */
|
|
float64x2_t VPCS_ATTR V_NAME_D1 (tanpi) (float64x2_t x)
|
|
{
|
|
const struct v_tanpi_data *d = ptr_barrier (&tanpi_data);
|
|
|
|
float64x2_t n = vrndnq_f64 (x);
|
|
|
|
/* inf produces nan that propagates. */
|
|
float64x2_t xr = vsubq_f64 (x, n);
|
|
float64x2_t ar = vabdq_f64 (x, n);
|
|
uint64x2_t flip = vcgtq_f64 (ar, v_f64 (0.25));
|
|
float64x2_t r = vbslq_f64 (flip, vsubq_f64 (v_f64 (0.5), ar), ar);
|
|
|
|
/* Order-14 pairwise Horner. */
|
|
float64x2_t r2 = vmulq_f64 (r, r);
|
|
float64x2_t r4 = vmulq_f64 (r2, r2);
|
|
|
|
float64x2_t c_1_3 = vld1q_f64 (&d->c1);
|
|
float64x2_t c_5_7 = vld1q_f64 (&d->c5);
|
|
float64x2_t c_9_11 = vld1q_f64 (&d->c9);
|
|
float64x2_t c_13_14 = vld1q_f64 (&d->c13);
|
|
float64x2_t p01 = vfmaq_laneq_f64 (d->c0, r2, c_1_3, 0);
|
|
float64x2_t p23 = vfmaq_laneq_f64 (d->c2, r2, c_1_3, 1);
|
|
float64x2_t p45 = vfmaq_laneq_f64 (d->c4, r2, c_5_7, 0);
|
|
float64x2_t p67 = vfmaq_laneq_f64 (d->c6, r2, c_5_7, 1);
|
|
float64x2_t p89 = vfmaq_laneq_f64 (d->c8, r2, c_9_11, 0);
|
|
float64x2_t p1011 = vfmaq_laneq_f64 (d->c10, r2, c_9_11, 1);
|
|
float64x2_t p1213 = vfmaq_laneq_f64 (d->c12, r2, c_13_14, 0);
|
|
|
|
float64x2_t p = vfmaq_laneq_f64 (p1213, r4, c_13_14, 1);
|
|
p = vfmaq_f64 (p1011, r4, p);
|
|
p = vfmaq_f64 (p89, r4, p);
|
|
p = vfmaq_f64 (p67, r4, p);
|
|
p = vfmaq_f64 (p45, r4, p);
|
|
p = vfmaq_f64 (p23, r4, p);
|
|
p = vfmaq_f64 (p01, r4, p);
|
|
p = vmulq_f64 (r, p);
|
|
|
|
float64x2_t p_recip = vdivq_f64 (v_f64 (1.0), p);
|
|
float64x2_t y = vbslq_f64 (flip, p_recip, p);
|
|
|
|
uint64x2_t sign
|
|
= veorq_u64 (vreinterpretq_u64_f64 (xr), vreinterpretq_u64_f64 (ar));
|
|
return vreinterpretq_f64_u64 (vorrq_u64 (vreinterpretq_u64_f64 (y), sign));
|
|
}
|