glibc/sysdeps/aarch64/fpu/asinh_advsimd.c

241 lines
8.0 KiB
C

/* Double-precision vector (Advanced SIMD) asinh function
Copyright (C) 2024-2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "v_math.h"
#include "poly_advsimd_f64.h"
const static struct data
{
uint64x2_t huge_bound, abs_mask, off, mask;
#if WANT_SIMD_EXCEPT
float64x2_t tiny_bound;
#endif
float64x2_t lc0, lc2;
double lc1, lc3, ln2, lc4;
float64x2_t c0, c2, c4, c6, c8, c10, c12, c14, c16, c17;
double c1, c3, c5, c7, c9, c11, c13, c15;
} data = {
#if WANT_SIMD_EXCEPT
.tiny_bound = V2 (0x1p-26),
#endif
/* Even terms of polynomial s.t. asinh(x) is approximated by
asinh(x) ~= x + x^3 * (C0 + C1 * x + C2 * x^2 + C3 * x^3 + ...).
Generated using Remez, f = (asinh(sqrt(x)) - sqrt(x))/x^(3/2). */
.c0 = V2 (-0x1.55555555554a7p-3),
.c1 = 0x1.3333333326c7p-4,
.c2 = V2 (-0x1.6db6db68332e6p-5),
.c3 = 0x1.f1c71b26fb40dp-6,
.c4 = V2 (-0x1.6e8b8b654a621p-6),
.c5 = 0x1.1c4daa9e67871p-6,
.c6 = V2 (-0x1.c9871d10885afp-7),
.c7 = 0x1.7a16e8d9d2ecfp-7,
.c8 = V2 (-0x1.3ddca533e9f54p-7),
.c9 = 0x1.0becef748dafcp-7,
.c10 = V2 (-0x1.b90c7099dd397p-8),
.c11 = 0x1.541f2bb1ffe51p-8,
.c12 = V2 (-0x1.d217026a669ecp-9),
.c13 = 0x1.0b5c7977aaf7p-9,
.c14 = V2 (-0x1.e0f37daef9127p-11),
.c15 = 0x1.388b5fe542a6p-12,
.c16 = V2 (-0x1.021a48685e287p-14),
.c17 = V2 (0x1.93d4ba83d34dap-18),
.lc0 = V2 (-0x1.ffffffffffff7p-2),
.lc1 = 0x1.55555555170d4p-2,
.lc2 = V2 (-0x1.0000000399c27p-2),
.lc3 = 0x1.999b2e90e94cap-3,
.lc4 = -0x1.554e550bd501ep-3,
.ln2 = 0x1.62e42fefa39efp-1,
.off = V2 (0x3fe6900900000000),
.huge_bound = V2 (0x5fe0000000000000),
.abs_mask = V2 (0x7fffffffffffffff),
.mask = V2 (0xfffULL << 52),
};
static float64x2_t NOINLINE VPCS_ATTR
special_case (float64x2_t x, float64x2_t y, uint64x2_t abs_mask,
uint64x2_t special)
{
/* Copy sign. */
y = vbslq_f64 (abs_mask, y, x);
return v_call_f64 (asinh, x, y, special);
}
#define N (1 << V_LOG_TABLE_BITS)
#define IndexMask (N - 1)
struct entry
{
float64x2_t invc;
float64x2_t logc;
};
static inline struct entry
lookup (uint64x2_t i)
{
/* Since N is a power of 2, n % N = n & (N - 1). */
struct entry e;
uint64_t i0 = (vgetq_lane_u64 (i, 0) >> (52 - V_LOG_TABLE_BITS)) & IndexMask;
uint64_t i1 = (vgetq_lane_u64 (i, 1) >> (52 - V_LOG_TABLE_BITS)) & IndexMask;
float64x2_t e0 = vld1q_f64 (&__v_log_data.table[i0].invc);
float64x2_t e1 = vld1q_f64 (&__v_log_data.table[i1].invc);
e.invc = vuzp1q_f64 (e0, e1);
e.logc = vuzp2q_f64 (e0, e1);
return e;
}
static inline float64x2_t
log_inline (float64x2_t xm, const struct data *d)
{
uint64x2_t u = vreinterpretq_u64_f64 (xm);
uint64x2_t u_off = vsubq_u64 (u, d->off);
int64x2_t k = vshrq_n_s64 (vreinterpretq_s64_u64 (u_off), 52);
uint64x2_t iz = vsubq_u64 (u, vandq_u64 (u_off, d->mask));
float64x2_t z = vreinterpretq_f64_u64 (iz);
struct entry e = lookup (u_off);
/* log(x) = log1p(z/c-1) + log(c) + k*Ln2. */
float64x2_t r = vfmaq_f64 (v_f64 (-1.0), z, e.invc);
float64x2_t kd = vcvtq_f64_s64 (k);
/* hi = r + log(c) + k*Ln2. */
float64x2_t ln2_and_lc4 = vld1q_f64 (&d->ln2);
float64x2_t hi = vfmaq_laneq_f64 (vaddq_f64 (e.logc, r), kd, ln2_and_lc4, 0);
/* y = r2*(A0 + r*A1 + r2*(A2 + r*A3 + r2*A4)) + hi. */
float64x2_t odd_coeffs = vld1q_f64 (&d->lc1);
float64x2_t r2 = vmulq_f64 (r, r);
float64x2_t y = vfmaq_laneq_f64 (d->lc2, r, odd_coeffs, 1);
float64x2_t p = vfmaq_laneq_f64 (d->lc0, r, odd_coeffs, 0);
y = vfmaq_laneq_f64 (y, r2, ln2_and_lc4, 1);
y = vfmaq_f64 (p, r2, y);
return vfmaq_f64 (hi, y, r2);
}
/* Double-precision implementation of vector asinh(x).
asinh is very sensitive around 1, so it is impractical to devise a single
low-cost algorithm which is sufficiently accurate on a wide range of input.
Instead we use two different algorithms:
asinh(x) = sign(x) * log(|x| + sqrt(x^2 + 1) if |x| >= 1
= sign(x) * (|x| + |x|^3 * P(x^2)) otherwise
where log(x) is an optimized log approximation, and P(x) is a polynomial
shared with the scalar routine. The greatest observed error 2.79 ULP, in
|x| >= 1:
_ZGVnN2v_asinh(0x1.2cd9d73ea76a6p+0) got 0x1.ffffd003219dap-1
want 0x1.ffffd003219ddp-1. */
VPCS_ATTR float64x2_t V_NAME_D1 (asinh) (float64x2_t x)
{
const struct data *d = ptr_barrier (&data);
float64x2_t ax = vabsq_f64 (x);
uint64x2_t gt1 = vcgeq_f64 (ax, v_f64 (1));
#if WANT_SIMD_EXCEPT
uint64x2_t iax = vreinterpretq_u64_f64 (ax);
uint64x2_t special = vcgeq_u64 (iax, (d->huge_bound));
uint64x2_t tiny = vcltq_f64 (ax, d->tiny_bound);
special = vorrq_u64 (special, tiny);
#else
uint64x2_t special = vcgeq_f64 (ax, vreinterpretq_f64_u64 (d->huge_bound));
#endif
/* Option 1: |x| >= 1.
Compute asinh(x) according by asinh(x) = log(x + sqrt(x^2 + 1)).
If WANT_SIMD_EXCEPT is enabled, sidestep special values, which will
overflow, by setting special lanes to 1. These will be fixed later. */
float64x2_t option_1 = v_f64 (0);
if (__glibc_likely (v_any_u64 (gt1)))
{
#if WANT_SIMD_EXCEPT
float64x2_t xm = v_zerofy_f64 (ax, special);
#else
float64x2_t xm = ax;
#endif
option_1 = log_inline (
vaddq_f64 (xm, vsqrtq_f64 (vfmaq_f64 (v_f64 (1), xm, xm))), d);
}
/* Option 2: |x| < 1.
Compute asinh(x) using a polynomial.
If WANT_SIMD_EXCEPT is enabled, sidestep special lanes, which will
overflow, and tiny lanes, which will underflow, by setting them to 0. They
will be fixed later, either by selecting x or falling back to the scalar
special-case. The largest observed error in this region is 1.47 ULPs:
_ZGVnN2v_asinh(0x1.fdfcd00cc1e6ap-1) got 0x1.c1d6bf874019bp-1
want 0x1.c1d6bf874019cp-1. */
float64x2_t option_2 = v_f64 (0);
if (__glibc_likely (v_any_u64 (vceqzq_u64 (gt1))))
{
#if WANT_SIMD_EXCEPT
ax = v_zerofy_f64 (ax, vorrq_u64 (tiny, gt1));
#endif
float64x2_t x2 = vmulq_f64 (ax, ax), z2 = vmulq_f64 (x2, x2);
/* Order-17 Pairwise Horner scheme. */
float64x2_t c13 = vld1q_f64 (&d->c1);
float64x2_t c57 = vld1q_f64 (&d->c5);
float64x2_t c911 = vld1q_f64 (&d->c9);
float64x2_t c1315 = vld1q_f64 (&d->c13);
float64x2_t p01 = vfmaq_laneq_f64 (d->c0, x2, c13, 0);
float64x2_t p23 = vfmaq_laneq_f64 (d->c2, x2, c13, 1);
float64x2_t p45 = vfmaq_laneq_f64 (d->c4, x2, c57, 0);
float64x2_t p67 = vfmaq_laneq_f64 (d->c6, x2, c57, 1);
float64x2_t p89 = vfmaq_laneq_f64 (d->c8, x2, c911, 0);
float64x2_t p1011 = vfmaq_laneq_f64 (d->c10, x2, c911, 1);
float64x2_t p1213 = vfmaq_laneq_f64 (d->c12, x2, c1315, 0);
float64x2_t p1415 = vfmaq_laneq_f64 (d->c14, x2, c1315, 1);
float64x2_t p1617 = vfmaq_f64 (d->c16, x2, d->c17);
float64x2_t p = vfmaq_f64 (p1415, z2, p1617);
p = vfmaq_f64 (p1213, z2, p);
p = vfmaq_f64 (p1011, z2, p);
p = vfmaq_f64 (p89, z2, p);
p = vfmaq_f64 (p67, z2, p);
p = vfmaq_f64 (p45, z2, p);
p = vfmaq_f64 (p23, z2, p);
p = vfmaq_f64 (p01, z2, p);
option_2 = vfmaq_f64 (ax, p, vmulq_f64 (ax, x2));
#if WANT_SIMD_EXCEPT
option_2 = vbslq_f64 (tiny, x, option_2);
#endif
}
/* Choose the right option for each lane. */
float64x2_t y = vbslq_f64 (gt1, option_1, option_2);
if (__glibc_unlikely (v_any_u64 (special)))
{
return special_case (x, y, d->abs_mask, special);
}
/* Copy sign. */
return vbslq_f64 (d->abs_mask, y, x);
}