/* Helper for double-precision Advanced SIMD routines which depend on log1p Copyright (C) 2024-2025 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see . */ #ifndef AARCH64_FPU_V_LOG1P_INLINE_H #define AARCH64_FPU_V_LOG1P_INLINE_H #include "v_math.h" struct v_log1p_data { float64x2_t c0, c2, c4, c6, c8, c10, c12, c14, c16; uint64x2_t hf_rt2_top, one_m_hf_rt2_top, umask; int64x2_t one_top; double c1, c3, c5, c7, c9, c11, c13, c15, c17, c18; double ln2[2]; }; /* Coefficients generated using Remez, deg=20, in [sqrt(2)/2-1, sqrt(2)-1]. */ #define V_LOG1P_CONSTANTS_TABLE \ { \ .c0 = V2 (-0x1.ffffffffffffbp-2), .c1 = 0x1.55555555551a9p-2, \ .c2 = V2 (-0x1.00000000008e3p-2), .c3 = 0x1.9999999a32797p-3, \ .c4 = V2 (-0x1.555555552fecfp-3), .c5 = 0x1.249248e071e5ap-3, \ .c6 = V2 (-0x1.ffffff8bf8482p-4), .c7 = 0x1.c71c8f07da57ap-4, \ .c8 = V2 (-0x1.9999ca4ccb617p-4), .c9 = 0x1.7459ad2e1dfa3p-4, \ .c10 = V2 (-0x1.554d2680a3ff2p-4), .c11 = 0x1.3b4c54d487455p-4, \ .c12 = V2 (-0x1.2548a9ffe80e6p-4), .c13 = 0x1.0f389a24b2e07p-4, \ .c14 = V2 (-0x1.eee4db15db335p-5), .c15 = 0x1.e95b494d4a5ddp-5, \ .c16 = V2 (-0x1.15fdf07cb7c73p-4), .c17 = 0x1.0310b70800fcfp-4, \ .c18 = -0x1.cfa7385bdb37ep-6, \ .ln2 = { 0x1.62e42fefa3800p-1, 0x1.ef35793c76730p-45 }, \ .hf_rt2_top = V2 (0x3fe6a09e00000000), \ .one_m_hf_rt2_top = V2 (0x00095f6200000000), \ .umask = V2 (0x000fffff00000000), .one_top = V2 (0x3ff) \ } #define BottomMask v_u64 (0xffffffff) static inline float64x2_t eval_poly (float64x2_t m, float64x2_t m2, const struct v_log1p_data *d) { /* Approximate log(1+m) on [-0.25, 0.5] using pairwise Horner. */ float64x2_t c13 = vld1q_f64 (&d->c1); float64x2_t c57 = vld1q_f64 (&d->c5); float64x2_t c911 = vld1q_f64 (&d->c9); float64x2_t c1315 = vld1q_f64 (&d->c13); float64x2_t c1718 = vld1q_f64 (&d->c17); float64x2_t p1617 = vfmaq_laneq_f64 (d->c16, m, c1718, 0); float64x2_t p1415 = vfmaq_laneq_f64 (d->c14, m, c1315, 1); float64x2_t p1213 = vfmaq_laneq_f64 (d->c12, m, c1315, 0); float64x2_t p1011 = vfmaq_laneq_f64 (d->c10, m, c911, 1); float64x2_t p89 = vfmaq_laneq_f64 (d->c8, m, c911, 0); float64x2_t p67 = vfmaq_laneq_f64 (d->c6, m, c57, 1); float64x2_t p45 = vfmaq_laneq_f64 (d->c4, m, c57, 0); float64x2_t p23 = vfmaq_laneq_f64 (d->c2, m, c13, 1); float64x2_t p01 = vfmaq_laneq_f64 (d->c0, m, c13, 0); float64x2_t p = vfmaq_laneq_f64 (p1617, m2, c1718, 1); p = vfmaq_f64 (p1415, m2, p); p = vfmaq_f64 (p1213, m2, p); p = vfmaq_f64 (p1011, m2, p); p = vfmaq_f64 (p89, m2, p); p = vfmaq_f64 (p67, m2, p); p = vfmaq_f64 (p45, m2, p); p = vfmaq_f64 (p23, m2, p); return vfmaq_f64 (p01, m2, p); } static inline float64x2_t log1p_inline (float64x2_t x, const struct v_log1p_data *d) { /* Helper for calculating log(x + 1): - No special-case handling - this should be dealt with by the caller. - Optionally simulate the shortcut for k=0, used in the scalar routine, using v_sel, for improved accuracy when the argument to log1p is close to 0. This feature is enabled by defining WANT_V_LOG1P_K0_SHORTCUT as 1 in the source of the caller before including this file. */ float64x2_t m = vaddq_f64 (x, v_f64 (1.0)); uint64x2_t mi = vreinterpretq_u64_f64 (m); uint64x2_t u = vaddq_u64 (mi, d->one_m_hf_rt2_top); int64x2_t ki = vsubq_s64 (vreinterpretq_s64_u64 (vshrq_n_u64 (u, 52)), d->one_top); float64x2_t k = vcvtq_f64_s64 (ki); /* Reduce x to f in [sqrt(2)/2, sqrt(2)]. */ uint64x2_t utop = vaddq_u64 (vandq_u64 (u, d->umask), d->hf_rt2_top); uint64x2_t u_red = vorrq_u64 (utop, vandq_u64 (mi, BottomMask)); float64x2_t f = vsubq_f64 (vreinterpretq_f64_u64 (u_red), v_f64 (1.0)); /* Correction term c/m. */ float64x2_t cm = vdivq_f64 (vsubq_f64 (x, vsubq_f64 (m, v_f64 (1.0))), m); #ifndef WANT_V_LOG1P_K0_SHORTCUT # error \ "Cannot use v_log1p_inline.h without specifying whether you need the k0 shortcut for greater accuracy close to 0" #elif WANT_V_LOG1P_K0_SHORTCUT /* Shortcut if k is 0 - set correction term to 0 and f to x. The result is that the approximation is solely the polynomial. */ uint64x2_t k0 = vceqzq_f64 (k); cm = v_zerofy_f64 (cm, k0); f = vbslq_f64 (k0, x, f); #endif /* Approximate log1p(f) on the reduced input using a polynomial. */ float64x2_t f2 = vmulq_f64 (f, f); float64x2_t p = eval_poly (f, f2, d); /* Assemble log1p(x) = k * log2 + log1p(f) + c/m. */ float64x2_t ln2 = vld1q_f64 (&d->ln2[0]); float64x2_t ylo = vfmaq_laneq_f64 (cm, k, ln2, 1); float64x2_t yhi = vfmaq_laneq_f64 (f, k, ln2, 0); return vfmaq_f64 (vaddq_f64 (ylo, yhi), f2, p); } #endif