http://sourceware.org/ml/libc-alpha/2013-08/msg00097.html
This is the first of nine patches adding little-endian support to the
existing optimised string and memory functions. I did spend some
time with a power7 simulator looking at cycle by cycle behaviour for
memchr, but most of these patches have not been run on cpu simulators
to check that we are going as fast as possible. I'm sure PowerPC can
do better. However, the little-endian support mostly leaves main
loops unchanged, so I'm banking on previous authors having done a
good job on big-endian.. As with most code you stare at long enough,
I found some improvements for big-endian too.
Little-endian support for strlen. Like most of the string functions,
I leave the main word or multiple-word loops substantially unchanged,
just needing to modify the tail.
Removing the branch in the power7 functions is just a tidy. .align
produces a branch anyway. Modifying regs in the non-power7 functions
is to suit the new little-endian tail.
* sysdeps/powerpc/powerpc64/power7/strlen.S (strlen): Add little-endian
support. Don't branch over align.
* sysdeps/powerpc/powerpc32/power7/strlen.S: Likewise.
* sysdeps/powerpc/powerpc64/strlen.S (strlen): Add little-endian support.
Rearrange tmp reg use to suit. Comment.
* sysdeps/powerpc/powerpc32/strlen.S: Likewise.
http://sourceware.org/ml/libc-alpha/2013-08/msg00090.html
This patch fixes symbol versioning in setjmp/longjmp. The existing
code uses raw versions, which results in wrong symbol versioning when
you want to build glibc with a base version of 2.19 for LE.
Note that the merging the 64-bit and 32-bit versions in novmx-lonjmp.c
and pt-longjmp.c doesn't result in GLIBC_2.0 versions for 64-bit, due
to the base in shlib_versions.
* sysdeps/powerpc/longjmp.c: Use proper symbol versioning macros.
* sysdeps/powerpc/novmx-longjmp.c: Likewise.
* sysdeps/powerpc/powerpc32/bsd-_setjmp.S: Likewise.
* sysdeps/powerpc/powerpc32/bsd-setjmp.S: Likewise.
* sysdeps/powerpc/powerpc32/fpu/__longjmp.S: Likewise.
* sysdeps/powerpc/powerpc32/fpu/setjmp.S: Likewise.
* sysdeps/powerpc/powerpc32/mcount.c: Likewise.
* sysdeps/powerpc/powerpc32/setjmp.S: Likewise.
* sysdeps/powerpc/powerpc64/setjmp.S: Likewise.
* nptl/sysdeps/unix/sysv/linux/powerpc/pt-longjmp.c: Likewise.
http://sourceware.org/ml/libc-alpha/2013-08/msg00089.html
Little-endian fixes for setjmp/longjmp. When writing these I noticed
the setjmp code corrupts the non volatile VMX registers when using an
unaligned buffer. Anton fixed this, and also simplified it quite a
bit.
The current code uses boilerplate for the case where we want to store
16 bytes to an unaligned address. For that we have to do a
read/modify/write of two aligned 16 byte quantities. In our case we
are storing a bunch of back to back data (consective VMX registers),
and only the start and end of the region need the read/modify/write.
[BZ #15723]
* sysdeps/powerpc/jmpbuf-offsets.h: Comment fix.
* sysdeps/powerpc/powerpc32/fpu/__longjmp-common.S: Correct
_dl_hwcap access for little-endian.
* sysdeps/powerpc/powerpc32/fpu/setjmp-common.S: Likewise. Don't
destroy vmx regs when saving unaligned.
* sysdeps/powerpc/powerpc64/__longjmp-common.S: Correct CR load.
* sysdeps/powerpc/powerpc64/setjmp-common.S: Likewise CR save. Don't
destroy vmx regs when saving unaligned.
http://sourceware.org/ml/libc-alpha/2013-08/msg00088.html
* sysdeps/powerpc/powerpc32/fpu/s_roundf.S: Increase alignment of
constants to usual value for .cst8 section, and remove redundant
high address load.
* sysdeps/powerpc/powerpc32/power4/fpu/s_llround.S: Use float
constant for 0x1p52. Load little-endian words of double from
correct stack offsets.
http://sourceware.org/ml/libc-alpha/2013-07/msg00201.html
These two functions oddly test x+1>0 when a double x is >= 0.0, and
similarly when x is negative. I don't see the point of that since the
test should always be true. I also don't see any need to convert x+1
to integer rather than simply using xr+1. Note that the standard
allows these functions to return any value when the input is outside
the range of long long, but it's not too hard to prevent xr+1
overflowing so that's what I've done.
(With rounding mode FE_UPWARD, x+1 can be a lot more than what you
might naively expect, but perhaps that situation was covered by the
x - xrf < 1.0 test.)
* sysdeps/powerpc/fpu/s_llround.c (__llround): Rewrite.
* sysdeps/powerpc/fpu/s_llroundf.c (__llroundf): Rewrite.
http://sourceware.org/ml/libc-alpha/2013-07/msg00200.html
This works around the fact that vsx is disabled in current
little-endian gcc. Also, float constants take 4 bytes in memory
vs. 16 bytes for vector constants, and we don't need to write one lot
of masks for double (register format) and another for float (mem
format).
* sysdeps/powerpc/fpu/s_float_bitwise.h (__float_and_test28): Don't
use vector int constants.
(__float_and_test24, __float_and8, __float_get_exp): Likewise.
http://sourceware.org/ml/libc-alpha/2013-08/msg00083.html
Further replacement of ieee854 macros and unions. These files also
have some optimisations for comparison against 0.0L, infinity and nan.
Since the ABI specifies that the high double of an IBM long double
pair is the value rounded to double, a high double of 0.0 means the
low double must also be 0.0. The ABI also says that infinity and
nan are encoded in the high double, with the low double unspecified.
This means that tests for 0.0L, +/-Infinity and +/-NaN need only check
the high double.
* sysdeps/ieee754/ldbl-128ibm/e_atan2l.c (__ieee754_atan2l): Rewrite
all uses of ieee854 long double macros and unions. Simplify tests
for long doubles that are fully specified by the high double.
* sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c (__ieee754_gammal_r):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_ilogbl.c (__ieee754_ilogbl): Likewise.
Remove dead code too.
* sysdeps/ieee754/ldbl-128ibm/e_jnl.c (__ieee754_jnl): Likewise.
(__ieee754_ynl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_log10l.c (__ieee754_log10l): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_logl.c (__ieee754_logl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Likewise.
Remove dead code too.
* sysdeps/ieee754/ldbl-128ibm/k_tanl.c (__kernel_tanl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_expm1l.c (__expm1l): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_frexpl.c (__frexpl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_isinf_nsl.c (__isinf_nsl): Likewise.
Simplify.
* sysdeps/ieee754/ldbl-128ibm/s_isinfl.c (___isinfl): Likewise.
Simplify.
* sysdeps/ieee754/ldbl-128ibm/s_log1pl.c (__log1pl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_modfl.c (__modfl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_nextafterl.c (__nextafterl): Likewise.
Comment on variable precision.
* sysdeps/ieee754/ldbl-128ibm/s_nexttoward.c (__nexttoward): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_nexttowardf.c (__nexttowardf):
Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_remquol.c (__remquol): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_scalblnl.c (__scalblnl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_scalbnl.c (__scalbnl): Likewise.
* sysdeps/ieee754/ldbl-128ibm/s_tanhl.c (__tanhl): Likewise.
* sysdeps/powerpc/fpu/libm-test-ulps: Adjust tan_towardzero ulps.
The pointer guard used for pointer mangling was not initialized for
static applications resulting in the security feature being disabled.
The pointer guard is now correctly initialized to a random value for
static applications. Existing static applications need to be
recompiled to take advantage of the fix.
The test tst-ptrguard1-static and tst-ptrguard1 add regression
coverage to ensure the pointer guards are sufficiently random
and initialized to a default value.
This patch fixes backtrace for PPC32 and PPC64 to correctly handle
signal trampolines. The 'debug/tst-backtrace6.c' also check for
SA_SIGINFO handling, where is triggers another vDSO symbols for PPC32.
Resolves: #15465
The program name may be unavailable if the user application tampers
with argc and argv[]. Some parts of the dynamic linker caters for
this while others don't, so this patch consolidates the check and
fallback into a single macro and updates all users.
This patch fix the 3c0265394d commits
by correctly setting minimum architecture for modf PPC optimization
to power5+ instead of power5 (since only on power5+ round/ceil will
be inline to inline assembly).
The branch prediction hints is actually hurts performance in this case.
The assembly implementation make two assumptions: 1. 'fabs (x) < 2^52'
is unlikely and 2. 'x > 0.0' is unlike (if 1. is true). Since it a
general floating point function, expected input is not bounded and then
it is better to let the hardware handle the branches.
The mantissa of mp_no is intended to take only integral values. This
is a relatively good choice for powerpc due to its 4 fpus, but not for
other architectures, which suffer due to this choice. This change
makes the default mantissa a long integer and allows powerpc to
override it. Additionally, some operations have been optimized for
integer manipulation, resulting in a significant improvement in
performance.
* sysdeps/ieee754/ldbl-opt/wordsize-64/s_ceil.c: New file.
* sysdeps/ieee754/ldbl-opt/wordsize-64/s_finite.c: New file.
* sysdeps/ieee754/ldbl-opt/wordsize-64/s_floor.c: New file.
* sysdeps/ieee754/ldbl-opt/wordsize-64/s_frexp.c: New file.
* sysdeps/ieee754/ldbl-opt/wordsize-64/s_isinf.c: New file.
* sysdeps/ieee754/ldbl-opt/wordsize-64/s_isnan.c: New file.
* sysdeps/ieee754/ldbl-opt/wordsize-64/s_llround.c: New file.
* sysdeps/ieee754/ldbl-opt/wordsize-64/s_logb.c: New file.
* sysdeps/ieee754/ldbl-opt/wordsize-64/s_lround.c: New file.
* sysdeps/ieee754/ldbl-opt/wordsize-64/s_modf.c: New file.
* sysdeps/ieee754/ldbl-opt/wordsize-64/s_nearbyint.c: New file.
* sysdeps/ieee754/ldbl-opt/wordsize-64/s_remquo.c: New file.
* sysdeps/ieee754/ldbl-opt/wordsize-64/s_rint.c: New file.
* sysdeps/ieee754/ldbl-opt/wordsize-64/s_round.c: New file.
* sysdeps/ieee754/ldbl-opt/wordsize-64/s_scalbln.c: New file.
* sysdeps/ieee754/ldbl-opt/wordsize-64/s_scalbn.c: New file.
* sysdeps/ieee754/ldbl-opt/wordsize-64/s_trunc.c: New file.
* sysdeps/unix/sysv/linux/powerpc/powerpc64/Implies: Add
ieee754/ldbl-opt/wordsize-64.
* sysdeps/powerpc/powerpc64/Implies: Add
ieee754/dbl-64/wordsize-64.