mirror of git://sourceware.org/git/glibc.git
math: Optimize frexp (binary64) with fast path for normal numbers
Add fast path optimization for frexp using a single unsigned comparison to identify normal floating-point numbers and return immediately via arithmetic on the bit representation. The implementation uses asuint64()/asdouble() from math_config.h and arithmetic operations to adjust the exponent, which generates better code than bit masking on ARM and RISC-V architectures. For subnormals, stdc_leading_zeros provides faster normalization than the traditional multiply approach. The zero/infinity/NaN check is simplified to (int64_t)(ix << 1) <= 0, which is more efficient than separate comparisons. Benchmark results on Intel Core i9-13900H (13th Gen): Baseline: 6.778 ns/op Optimized: 4.007 ns/op Speedup: 1.69x (40.9% faster) Zero: 3.580 ns/op (fast path) Denormal: 6.096 ns/op (slower, rare case) Signed-off-by: Osama Abdelkader <osama.abdelkader@gmail.com> Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This commit is contained in:
parent
4d2582150e
commit
e05476b5c8
|
|
@ -18,48 +18,37 @@
|
||||||
#include <inttypes.h>
|
#include <inttypes.h>
|
||||||
#include <math.h>
|
#include <math.h>
|
||||||
#include <math_private.h>
|
#include <math_private.h>
|
||||||
|
#include <stdbit.h>
|
||||||
|
#include "math_config.h"
|
||||||
#include <libm-alias-double.h>
|
#include <libm-alias-double.h>
|
||||||
|
|
||||||
/*
|
|
||||||
* for non-zero, finite x
|
|
||||||
* x = frexp(arg,&exp);
|
|
||||||
* return a double fp quantity x such that 0.5 <= |x| <1.0
|
|
||||||
* and the corresponding binary exponent "exp". That is
|
|
||||||
* arg = x*2^exp.
|
|
||||||
* If arg is inf, 0.0, or NaN, then frexp(arg,&exp) returns arg
|
|
||||||
* with *exp=0.
|
|
||||||
*/
|
|
||||||
|
|
||||||
|
|
||||||
double
|
double
|
||||||
__frexp (double x, int *eptr)
|
__frexp (double x, int *eptr)
|
||||||
{
|
{
|
||||||
int64_t ix;
|
uint64_t ix = asuint64 (x);
|
||||||
EXTRACT_WORDS64 (ix, x);
|
uint32_t ex = (ix >> MANTISSA_WIDTH) & 0x7ff;
|
||||||
int32_t ex = 0x7ff & (ix >> 52);
|
|
||||||
int e = 0;
|
|
||||||
|
|
||||||
if (__glibc_likely (ex != 0x7ff && x != 0.0))
|
/* Fast path for normal numbers. */
|
||||||
|
if (__glibc_likely ((ex - 1) < 0x7fe))
|
||||||
{
|
{
|
||||||
/* Not zero and finite. */
|
int e = ex - EXPONENT_BIAS + 1;
|
||||||
e = ex - 1022;
|
|
||||||
if (__glibc_unlikely (ex == 0))
|
|
||||||
{
|
|
||||||
/* Subnormal. */
|
|
||||||
x *= 0x1p54;
|
|
||||||
EXTRACT_WORDS64 (ix, x);
|
|
||||||
ex = 0x7ff & (ix >> 52);
|
|
||||||
e = ex - 1022 - 54;
|
|
||||||
}
|
|
||||||
|
|
||||||
ix = (ix & INT64_C (0x800fffffffffffff)) | INT64_C (0x3fe0000000000000);
|
|
||||||
INSERT_WORDS64 (x, ix);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
/* Quiet signaling NaNs. */
|
|
||||||
x += x;
|
|
||||||
|
|
||||||
*eptr = e;
|
*eptr = e;
|
||||||
return x;
|
return asdouble (ix - ((uint64_t) e << MANTISSA_WIDTH));
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Handle zero, infinity, and NaN. */
|
||||||
|
if (__glibc_likely ((int64_t) (ix << 1) <= 0))
|
||||||
|
{
|
||||||
|
*eptr = 0;
|
||||||
|
return x + x;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Subnormal. */
|
||||||
|
uint64_t sign = ix & SIGN_MASK;
|
||||||
|
int lz = stdc_leading_zeros (ix << (64 - MANTISSA_WIDTH - 1));
|
||||||
|
ix <<= lz;
|
||||||
|
*eptr = -(EXPONENT_BIAS - 2) - lz;
|
||||||
|
return asdouble ((ix & MANTISSA_MASK) | sign
|
||||||
|
| (((uint64_t) (EXPONENT_BIAS - 1)) << MANTISSA_WIDTH));
|
||||||
}
|
}
|
||||||
libm_alias_double (__frexp, frexp)
|
libm_alias_double (__frexp, frexp)
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue