diff --git a/sysdeps/aarch64/fpu/cosh_sve.c b/sysdeps/aarch64/fpu/cosh_sve.c index 77e58e123e..f5a163b054 100644 --- a/sysdeps/aarch64/fpu/cosh_sve.c +++ b/sysdeps/aarch64/fpu/cosh_sve.c @@ -21,71 +21,99 @@ static const struct data { - float64_t poly[3]; - float64_t inv_ln2, ln2_hi, ln2_lo, shift, thres; + double c0, c2; + double c1, c3; + float64_t inv_ln2, ln2_hi, ln2_lo, shift; uint64_t special_bound; } data = { - .poly = { 0x1.fffffffffffd4p-2, 0x1.5555571d6b68cp-3, - 0x1.5555576a59599p-5, }, + /* Generated using Remez, in [-log(2)/128, log(2)/128]. */ + .c0 = 0x1.fffffffffdbcdp-2, + .c1 = 0x1.555555555444cp-3, + .c2 = 0x1.555573c6a9f7dp-5, + .c3 = 0x1.1111266d28935p-7, + .ln2_hi = 0x1.62e42fefa3800p-1, + .ln2_lo = 0x1.ef35793c76730p-45, + /* 1/ln2. */ + .inv_ln2 = 0x1.71547652b82fep+0, + .shift = 0x1.800000000ff80p+46, /* 1.5*2^46+1022. */ - .inv_ln2 = 0x1.71547652b82fep8, /* N/ln2. */ - /* -ln2/N. */ - .ln2_hi = -0x1.62e42fefa39efp-9, - .ln2_lo = -0x1.abc9e3b39803f3p-64, - .shift = 0x1.8p+52, - .thres = 704.0, - - /* 0x1.6p9, above which exp overflows. */ - .special_bound = 0x4086000000000000, + /* asuint(ln(2^(1024 - 1/128))), the value above which exp overflows. */ + .special_bound = 0x40862e37e7d8ba72, }; -static svfloat64_t NOINLINE -special_case (svfloat64_t x, svbool_t pg, svfloat64_t t, svbool_t special) -{ - svfloat64_t half_t = svmul_x (svptrue_b64 (), t, 0.5); - svfloat64_t half_over_t = svdivr_x (pg, t, 0.5); - svfloat64_t y = svadd_x (pg, half_t, half_over_t); - return sv_call_f64 (cosh, x, y, special); -} - -/* Helper for approximating exp(x). Copied from sv_exp_tail, with no - special-case handling or tail. */ +/* Helper for approximating exp(x)/2. + Functionally identical to FEXPA exp(x), but an adjustment in + the shift value which leads to a reduction in the exponent of scale by 1, + thus halving the result at no cost. */ static inline svfloat64_t -exp_inline (svfloat64_t x, const svbool_t pg, const struct data *d) +exp_over_two_inline (const svbool_t pg, svfloat64_t x, const struct data *d) { /* Calculate exp(x). */ svfloat64_t z = svmla_x (pg, sv_f64 (d->shift), x, d->inv_ln2); + svuint64_t u = svreinterpret_u64 (z); svfloat64_t n = svsub_x (pg, z, d->shift); - svfloat64_t r = svmla_x (pg, x, n, d->ln2_hi); - r = svmla_x (pg, r, n, d->ln2_lo); + svfloat64_t c13 = svld1rq (svptrue_b64 (), &d->c1); + svfloat64_t ln2 = svld1rq (svptrue_b64 (), &d->ln2_hi); - svuint64_t u = svreinterpret_u64 (z); - svuint64_t e = svlsl_x (pg, u, 52 - V_EXP_TAIL_TABLE_BITS); - svuint64_t i = svand_x (svptrue_b64 (), u, 0xff); + svfloat64_t r = x; + r = svmls_lane (r, n, ln2, 0); + r = svmls_lane (r, n, ln2, 1); - svfloat64_t y = svmla_x (pg, sv_f64 (d->poly[1]), r, d->poly[2]); - y = svmla_x (pg, sv_f64 (d->poly[0]), r, y); - y = svmla_x (pg, sv_f64 (1.0), r, y); - y = svmul_x (svptrue_b64 (), r, y); + svfloat64_t r2 = svmul_x (svptrue_b64 (), r, r); + svfloat64_t p01 = svmla_lane (sv_f64 (d->c0), r, c13, 0); + svfloat64_t p23 = svmla_lane (sv_f64 (d->c2), r, c13, 1); + svfloat64_t p04 = svmla_x (pg, p01, p23, r2); + svfloat64_t p = svmla_x (pg, r, p04, r2); - /* s = 2^(n/N). */ - u = svld1_gather_index (pg, __v_exp_tail_data, i); - svfloat64_t s = svreinterpret_f64 (svadd_x (pg, u, e)); + svfloat64_t scale = svexpa (u); - return svmla_x (pg, s, s, y); + return svmla_x (pg, scale, scale, p); +} + +/* Vectorised special case to handle values past where exp_inline overflows. + Halves the input value and uses the identity exp(x) = exp(x/2)^2 to double + the valid range of inputs, and returns inf for anything past that. */ +static svfloat64_t NOINLINE +special_case (svbool_t pg, svbool_t special, svfloat64_t ax, svfloat64_t t, + const struct data *d) +{ + /* Finish fast path to compute values for non-special cases. */ + svfloat64_t inv_twoexp = svdivr_x (pg, t, 0.25); + svfloat64_t y = svadd_x (pg, t, inv_twoexp); + + /* Halves input value, and then check if any cases + are still going to overflow. */ + ax = svmul_x (special, ax, 0.5); + svbool_t is_safe + = svcmplt (special, svreinterpret_u64 (ax), d->special_bound); + + /* Computes exp(x/2), and sets any overflowing lanes to inf. */ + svfloat64_t half_exp = exp_over_two_inline (special, ax, d); + half_exp = svsel (is_safe, half_exp, sv_f64 (INFINITY)); + + /* Construct special case cosh(x) = (exp(x/2)^2)/2. */ + svfloat64_t exp = svmul_x (svptrue_b64 (), half_exp, 2); + svfloat64_t special_y = svmul_x (special, exp, half_exp); + + /* Select correct return values for special and non-special cases. */ + special_y = svsel (special, special_y, y); + + /* Ensure an input of nan is correctly propagated. */ + svbool_t is_nan + = svcmpgt (special, svreinterpret_u64 (ax), sv_u64 (0x7ff0000000000000)); + return svsel (is_nan, ax, svsel (special, special_y, y)); } /* Approximation for SVE double-precision cosh(x) using exp_inline. cosh(x) = (exp(x) + exp(-x)) / 2. - The greatest observed error is in the scalar fall-back region, so is the - same as the scalar routine, 1.93 ULP: - _ZGVsMxv_cosh (0x1.628ad45039d2fp+9) got 0x1.fd774e958236dp+1021 - want 0x1.fd774e958236fp+1021. + The greatest observed error in special case region is 2.66 + 0.5 ULP: + _ZGVsMxv_cosh (0x1.633b532ffbc1ap+9) got 0x1.f9b2d3d22399ep+1023 + want 0x1.f9b2d3d22399bp+1023 - The greatest observed error in the non-special region is 1.54 ULP: - _ZGVsMxv_cosh (0x1.ba5651dd4486bp+2) got 0x1.f5e2bb8d5c98fp+8 - want 0x1.f5e2bb8d5c991p+8. */ + The greatest observed error in the non-special region is 1.01 + 0.5 ULP: + _ZGVsMxv_cosh (0x1.998ecbb3c1f81p+1) got 0x1.890b225657f84p+3 + want 0x1.890b225657f82p+3. */ svfloat64_t SV_NAME_D1 (cosh) (svfloat64_t x, const svbool_t pg) { const struct data *d = ptr_barrier (&data); @@ -94,14 +122,13 @@ svfloat64_t SV_NAME_D1 (cosh) (svfloat64_t x, const svbool_t pg) svbool_t special = svcmpgt (pg, svreinterpret_u64 (ax), d->special_bound); /* Up to the point that exp overflows, we can use it to calculate cosh by - exp(|x|) / 2 + 1 / (2 * exp(|x|)). */ - svfloat64_t t = exp_inline (ax, pg, d); + (exp(|x|)/2 + 1) / (2 * exp(|x|)). */ + svfloat64_t half_exp = exp_over_two_inline (pg, ax, d); - /* Fall back to scalar for any special cases. */ + /* Falls back to entirely standalone vectorized special case. */ if (__glibc_unlikely (svptest_any (pg, special))) - return special_case (x, pg, t, special); + return special_case (pg, special, ax, half_exp, d); - svfloat64_t half_t = svmul_x (svptrue_b64 (), t, 0.5); - svfloat64_t half_over_t = svdivr_x (pg, t, 0.5); - return svadd_x (pg, half_t, half_over_t); + svfloat64_t inv_twoexp = svdivr_x (pg, half_exp, 0.25); + return svadd_x (pg, half_exp, inv_twoexp); } diff --git a/sysdeps/aarch64/fpu/sinh_sve.c b/sysdeps/aarch64/fpu/sinh_sve.c index 963453f812..072ba8fca9 100644 --- a/sysdeps/aarch64/fpu/sinh_sve.c +++ b/sysdeps/aarch64/fpu/sinh_sve.c @@ -18,90 +18,153 @@ . */ #include "sv_math.h" -#include "poly_sve_f64.h" static const struct data { - float64_t poly[11]; - float64_t inv_ln2, m_ln2_hi, m_ln2_lo, shift; uint64_t halff; - int64_t onef; - uint64_t large_bound; + double c2, c4; + double inv_ln2; + double ln2_hi, ln2_lo; + double c0, c1, c3; + double shift, special_bound, bound; + uint64_t expm1_data[20]; } data = { - /* Generated using Remez, deg=12 in [-log(2)/2, log(2)/2]. */ - .poly = { 0x1p-1, 0x1.5555555555559p-3, 0x1.555555555554bp-5, - 0x1.111111110f663p-7, 0x1.6c16c16c1b5f3p-10, - 0x1.a01a01affa35dp-13, 0x1.a01a018b4ecbbp-16, - 0x1.71ddf82db5bb4p-19, 0x1.27e517fc0d54bp-22, - 0x1.af5eedae67435p-26, 0x1.1f143d060a28ap-29, }, - - .inv_ln2 = 0x1.71547652b82fep0, - .m_ln2_hi = -0x1.62e42fefa39efp-1, - .m_ln2_lo = -0x1.abc9e3b39803fp-56, - .shift = 0x1.8p52, + /* Table lookup of 2^(i/64) - 1, for values of i from 0..19. */ + .expm1_data = { + 0x0000000000000000, 0x3f864d1f3bc03077, 0x3f966c34c5615d0f, 0x3fa0e8a30eb37901, + 0x3fa6ab0d9f3121ec, 0x3fac7d865a7a3440, 0x3fb1301d0125b50a, 0x3fb429aaea92ddfb, + 0x3fb72b83c7d517ae, 0x3fba35beb6fcb754, 0x3fbd4873168b9aa8, 0x3fc031dc431466b2, + 0x3fc1c3d373ab11c3, 0x3fc35a2b2f13e6e9, 0x3fc4f4efa8fef709, 0x3fc6942d3720185a, + 0x3fc837f0518db8a9, 0x3fc9e0459320b7fa, 0x3fcb8d39b9d54e55, 0x3fcd3ed9a72cffb7, + }, + /* Generated using Remez, in [-log(2)/128, log(2)/128]. */ + .c0 = 0x1p-1, + .c1 = 0x1.55555555548f9p-3, + .c2 = 0x1.5555555554c22p-5, + .c3 = 0x1.111123aaa2fb2p-7, + .c4 = 0x1.6c16d77d98e5bp-10, + .ln2_hi = 0x1.62e42fefa3800p-1, + .ln2_lo = 0x1.ef35793c76730p-45, + .inv_ln2 = 0x1.71547652b82fep+0, + .shift = 0x1.800000000ffc0p+46, /* 1.5*2^46+1023. */ .halff = 0x3fe0000000000000, - .onef = 0x3ff0000000000000, - /* 2^9. expm1 helper overflows for large input. */ - .large_bound = 0x4080000000000000, + .special_bound = 0x1.62e37e7d8ba72p+9, /* ln(2^(1024 - 1/128)). */ + .bound = 0x1.a56ef8ec924ccp-3 /* 19*ln2/64. */ }; +/* A specialised FEXPA expm1 that is only valid for positive inputs and + has no special cases. Based off the full FEXPA expm1 implementated for + _ZGVsMxv_expm1, with a slightly modified file to keep sinh under 3.5ULP. */ static inline svfloat64_t -expm1_inline (svfloat64_t x, svbool_t pg) +expm1_inline (svbool_t pg, svfloat64_t x) { const struct data *d = ptr_barrier (&data); - /* Reduce argument: - exp(x) - 1 = 2^i * (expm1(f) + 1) - 1 - where i = round(x / ln2) - and f = x - i * ln2 (f in [-ln2/2, ln2/2]). */ - svfloat64_t j - = svsub_x (pg, svmla_x (pg, sv_f64 (d->shift), x, d->inv_ln2), d->shift); - svint64_t i = svcvt_s64_x (pg, j); - svfloat64_t f = svmla_x (pg, x, j, d->m_ln2_hi); - f = svmla_x (pg, f, j, d->m_ln2_lo); - /* Approximate expm1(f) using polynomial. */ - svfloat64_t f2 = svmul_x (pg, f, f); - svfloat64_t f4 = svmul_x (pg, f2, f2); - svfloat64_t f8 = svmul_x (pg, f4, f4); - svfloat64_t p - = svmla_x (pg, f, f2, sv_estrin_10_f64_x (pg, f, f2, f4, f8, d->poly)); - /* t = 2^i. */ - svfloat64_t t = svscale_x (pg, sv_f64 (1), i); - /* expm1(x) ~= p * t + (t - 1). */ - return svmla_x (pg, svsub_x (pg, t, 1.0), p, t); + svfloat64_t z = svmla_x (pg, sv_f64 (d->shift), x, d->inv_ln2); + svuint64_t u = svreinterpret_u64 (z); + svfloat64_t n = svsub_x (pg, z, d->shift); + + svfloat64_t ln2 = svld1rq (svptrue_b64 (), &d->ln2_hi); + svfloat64_t c24 = svld1rq (svptrue_b64 (), &d->c2); + + svfloat64_t r = x; + r = svmls_lane (r, n, ln2, 0); + r = svmls_lane (r, n, ln2, 1); + + svfloat64_t r2 = svmul_x (svptrue_b64 (), r, r); + + svfloat64_t p; + svfloat64_t c12 = svmla_lane (sv_f64 (d->c1), r, c24, 0); + svfloat64_t c34 = svmla_lane (sv_f64 (d->c3), r, c24, 1); + p = svmad_x (pg, c34, r2, c12); + p = svmad_x (pg, p, r, sv_f64 (d->c0)); + p = svmad_x (pg, p, r2, r); + + svfloat64_t scale = svexpa (u); + + /* We want to construct expm1(x) = (scale - 1) + scale * poly. + However, for values of scale close to 1, scale-1 causes large ULP errors + due to cancellation. + + This can be circumvented by using a small lookup for scale-1 + when our input is below a certain bound, otherwise we can use FEXPA. */ + svbool_t is_small = svaclt (pg, x, d->bound); + + /* Index via the input of FEXPA, but we only care about the lower 5 bits. */ + svuint64_t base_idx = svand_x (pg, u, 0x1f); + + /* Compute scale - 1 from FEXPA, and lookup values where this fails. */ + svfloat64_t scalem1_estimate = svsub_x (pg, scale, sv_f64 (1.0)); + svuint64_t scalem1_lookup + = svld1_gather_index (is_small, d->expm1_data, base_idx); + + /* Select the appropriate scale - 1 value based on x. */ + svfloat64_t scalem1 + = svsel (is_small, svreinterpret_f64 (scalem1_lookup), scalem1_estimate); + + /* return expm1 = scale - 1 + (scale * poly). */ + return svmla_x (pg, scalem1, scale, p); } +/* Vectorised special case to handle values past where exp_inline overflows. + Halves the input value and uses the identity exp(x) = exp(x/2)^2 to double + the valid range of inputs, and returns inf for anything past that. */ static svfloat64_t NOINLINE -special_case (svfloat64_t x, svbool_t pg) +special_case (svbool_t pg, svbool_t special, svfloat64_t ax, + svfloat64_t halfsign, const struct data *d) { - return sv_call_f64 (sinh, x, x, pg); + /* Halves input value, and then check if any cases + are still going to overflow. */ + ax = svmul_x (special, ax, 0.5); + svbool_t is_safe = svaclt (special, ax, d->special_bound); + + svfloat64_t t = expm1_inline (pg, ax); + + /* Finish fastpass to compute values for non-special cases. */ + svfloat64_t y = svadd_x (pg, t, svdiv_x (pg, t, svadd_x (pg, t, 1.0))); + y = svmul_x (pg, y, halfsign); + + /* Computes special lane, and set remaining overflow lanes to inf. */ + svfloat64_t half_special_y = svmul_x (svptrue_b64 (), t, halfsign); + svfloat64_t special_y = svmul_x (svptrue_b64 (), half_special_y, t); + + svuint64_t signed_inf + = svorr_x (svptrue_b64 (), svreinterpret_u64 (halfsign), + sv_u64 (0x7ff0000000000000)); + special_y = svsel (is_safe, special_y, svreinterpret_f64 (signed_inf)); + + /* Join resulting vectors together and return. */ + return svsel (special, special_y, y); } -/* Approximation for SVE double-precision sinh(x) using expm1. - sinh(x) = (exp(x) - exp(-x)) / 2. - The greatest observed error is 2.57 ULP: - _ZGVsMxv_sinh (0x1.a008538399931p-2) got 0x1.ab929fc64bd66p-2 - want 0x1.ab929fc64bd63p-2. */ +/* Approximation for SVE double-precision sinh(x) using FEXPA expm1. + Uses sinh(x) = e^2x - 1 / 2e^x, rewritten for accuracy. + The greatest observed error in the non-special region is 2.63 + 0.5 ULP: + _ZGVsMxv_sinh (0x1.b5e0e13ba88aep-2) got 0x1.c3587faf97b0cp-2 + want 0x1.c3587faf97b09p-2 + + The greatest observed error in the special region is 2.65 + 0.5 ULP: + _ZGVsMxv_sinh (0x1.633ce847dab1ap+9) got 0x1.fffd30eea0066p+1023 + want 0x1.fffd30eea0063p+1023. */ svfloat64_t SV_NAME_D1 (sinh) (svfloat64_t x, svbool_t pg) { const struct data *d = ptr_barrier (&data); + svbool_t special = svacge (pg, x, d->special_bound); svfloat64_t ax = svabs_x (pg, x); svuint64_t sign = sveor_x (pg, svreinterpret_u64 (x), svreinterpret_u64 (ax)); svfloat64_t halfsign = svreinterpret_f64 (svorr_x (pg, sign, d->halff)); - svbool_t special = svcmpge (pg, svreinterpret_u64 (ax), d->large_bound); - /* Fall back to scalar variant for all lanes if any are special. */ if (__glibc_unlikely (svptest_any (pg, special))) - return special_case (x, pg); + return special_case (pg, special, ax, halfsign, d); /* Up to the point that expm1 overflows, we can use it to calculate sinh using a slight rearrangement of the definition of sinh. This allows us to retain acceptable accuracy for very small inputs. */ - svfloat64_t t = expm1_inline (ax, pg); + svfloat64_t t = expm1_inline (pg, ax); t = svadd_x (pg, t, svdiv_x (pg, t, svadd_x (pg, t, 1.0))); return svmul_x (pg, t, halfsign); } diff --git a/sysdeps/aarch64/fpu/tanh_sve.c b/sysdeps/aarch64/fpu/tanh_sve.c index 789cc6854f..5869419010 100644 --- a/sysdeps/aarch64/fpu/tanh_sve.c +++ b/sysdeps/aarch64/fpu/tanh_sve.c @@ -18,83 +18,117 @@ . */ #include "sv_math.h" -#include "poly_sve_f64.h" static const struct data { - float64_t poly[11]; - float64_t inv_ln2, ln2_hi, ln2_lo, shift; - uint64_t thresh, tiny_bound; + double ln2_hi, ln2_lo; + double c2, c4; + double c0, c1, c3; + double two_over_ln2, shift; + uint64_t tiny_bound; + double large_bound, fexpa_bound; + uint64_t e2xm1_data[20]; } data = { - /* Generated using Remez, deg=12 in [-log(2)/2, log(2)/2]. */ - .poly = { 0x1p-1, 0x1.5555555555559p-3, 0x1.555555555554bp-5, - 0x1.111111110f663p-7, 0x1.6c16c16c1b5f3p-10, - 0x1.a01a01affa35dp-13, 0x1.a01a018b4ecbbp-16, - 0x1.71ddf82db5bb4p-19, 0x1.27e517fc0d54bp-22, - 0x1.af5eedae67435p-26, 0x1.1f143d060a28ap-29, }, - - .inv_ln2 = 0x1.71547652b82fep0, - .ln2_hi = -0x1.62e42fefa39efp-1, - .ln2_lo = -0x1.abc9e3b39803fp-56, - .shift = 0x1.8p52, - + /* Generated using Remez, in [-log(2)/128, log(2)/128]. */ + .c0 = 0x1p-1, + .c1 = 0x1.55555555548f9p-3, + .c2 = 0x1.5555555554c22p-5, + .c3 = 0x1.111123aaa2fb2p-7, + .c4 = 0x1.6c16d77d98e5bp-10, + .ln2_hi = 0x1.62e42fefa3800p-1, + .ln2_lo = 0x1.ef35793c76730p-45, + .two_over_ln2 = 0x1.71547652b82fep+1, + .shift = 0x1.800000000ffc0p+46, /* 1.5*2^46+1023. */ .tiny_bound = 0x3e40000000000000, /* asuint64 (0x1p-27). */ - /* asuint64(0x1.241bf835f9d5fp+4) - asuint64(tiny_bound). */ - .thresh = 0x01f241bf835f9d5f, + .large_bound = 0x1.30fc1931f09cap+4, /* arctanh(1 - 2^-54). */ + .fexpa_bound = 0x1.a56ef8ec924ccp-4, /* 19/64 * ln2/2. */ + /* Table lookup of 2^(i/64) - 1, for values of i from 0..19. */ + .e2xm1_data = { + 0x0000000000000000, 0x3f864d1f3bc03077, 0x3f966c34c5615d0f, 0x3fa0e8a30eb37901, + 0x3fa6ab0d9f3121ec, 0x3fac7d865a7a3440, 0x3fb1301d0125b50a, 0x3fb429aaea92ddfb, + 0x3fb72b83c7d517ae, 0x3fba35beb6fcb754, 0x3fbd4873168b9aa8, 0x3fc031dc431466b2, + 0x3fc1c3d373ab11c3, 0x3fc35a2b2f13e6e9, 0x3fc4f4efa8fef709, 0x3fc6942d3720185a, + 0x3fc837f0518db8a9, 0x3fc9e0459320b7fa, 0x3fcb8d39b9d54e55, 0x3fcd3ed9a72cffb7, + }, }; +/* An expm1 inspired, FEXPA based helper function that returns an + accurate estimate for e^2x - 1. With no special case or support for + negative inputs of x. */ static inline svfloat64_t -expm1_inline (svfloat64_t x, const svbool_t pg, const struct data *d) +e2xm1_inline (const svbool_t pg, svfloat64_t x, const struct data *d) { - /* Helper routine for calculating exp(x) - 1. Vector port of the helper from - the scalar variant of tanh. */ + svfloat64_t z = svmla_x (pg, sv_f64 (d->shift), x, d->two_over_ln2); + svuint64_t u = svreinterpret_u64 (z); + svfloat64_t n = svsub_x (pg, z, d->shift); - /* Reduce argument: f in [-ln2/2, ln2/2], i is exact. */ - svfloat64_t j - = svsub_x (pg, svmla_x (pg, sv_f64 (d->shift), x, d->inv_ln2), d->shift); - svint64_t i = svcvt_s64_x (pg, j); - svfloat64_t f = svmla_x (pg, x, j, d->ln2_hi); - f = svmla_x (pg, f, j, d->ln2_lo); + /* r = x - n * ln2/2, r is in [-ln2/(2N), ln2/(2N)]. */ + svfloat64_t ln2 = svld1rq (svptrue_b64 (), &d->ln2_hi); + svfloat64_t r = svadd_x (pg, x, x); + r = svmls_lane (r, n, ln2, 0); + r = svmls_lane (r, n, ln2, 1); - /* Approximate expm1(f) using polynomial. */ - svfloat64_t f2 = svmul_x (pg, f, f); - svfloat64_t f4 = svmul_x (pg, f2, f2); - svfloat64_t p = svmla_x ( - pg, f, f2, - sv_estrin_10_f64_x (pg, f, f2, f4, svmul_x (pg, f4, f4), d->poly)); + /* y = exp(r) - 1 ~= r + C0 r^2 + C1 r^3 + C2 r^4 + C3 r^5 + C4 r^6. */ + svfloat64_t r2 = svmul_x (svptrue_b64 (), r, r); + svfloat64_t c24 = svld1rq (svptrue_b64 (), &d->c2); - /* t = 2 ^ i. */ - svfloat64_t t = svscale_x (pg, sv_f64 (1), i); - /* expm1(x) = p * t + (t - 1). */ - return svmla_x (pg, svsub_x (pg, t, 1), p, t); + svfloat64_t p; + svfloat64_t c12 = svmla_lane (sv_f64 (d->c1), r, c24, 0); + svfloat64_t c34 = svmla_lane (sv_f64 (d->c3), r, c24, 1); + p = svmad_x (pg, c34, r2, c12); + p = svmad_x (pg, p, r, sv_f64 (d->c0)); + p = svmad_x (pg, p, r2, r); + + svfloat64_t scale = svexpa (u); + + /* We want to construct e2xm1(x) = (scale - 1) + scale * poly. + However, for values of scale close to 1, scale-1 causes large ULP errors + due to cancellation. + + This can be circumvented by using a small lookup for scale-1 + when our input is below a certain bound, otherwise we can use FEXPA. */ + svbool_t is_small = svaclt (pg, x, d->fexpa_bound); + + /* Index via the input of FEXPA, but we only care about the lower 5 bits. */ + svuint64_t base_idx = svand_x (pg, u, 0x1f); + + /* Compute scale - 1 from FEXPA, and lookup values where this fails. */ + svfloat64_t scalem1_estimate = svsub_x (pg, scale, sv_f64 (1.0)); + svuint64_t scalem1_lookup + = svld1_gather_index (is_small, d->e2xm1_data, base_idx); + + /* Select the appropriate scale - 1 value based on x. */ + svfloat64_t scalem1 + = svsel (is_small, svreinterpret_f64 (scalem1_lookup), scalem1_estimate); + return svmla_x (pg, scalem1, scale, p); } -static svfloat64_t NOINLINE -special_case (svfloat64_t x, svfloat64_t y, svbool_t special) -{ - return sv_call_f64 (tanh, x, y, special); -} - -/* SVE approximation for double-precision tanh(x), using a simplified - version of expm1. The greatest observed error is 2.77 ULP: - _ZGVsMxv_tanh(-0x1.c4a4ca0f9f3b7p-3) got -0x1.bd6a21a163627p-3 - want -0x1.bd6a21a163624p-3. */ +/* SVE approximation for double-precision tanh(x), using a modified version of + FEXPA expm1 to calculate e^2x - 1. + The greatest observed error is 2.79 + 0.5 ULP: + _ZGVsMxv_tanh (0x1.fff868eb3c223p-9) got 0x1.fff7be486cae6p-9 + want 0x1.fff7be486cae9p-9. */ svfloat64_t SV_NAME_D1 (tanh) (svfloat64_t x, svbool_t pg) { const struct data *d = ptr_barrier (&data); - svuint64_t ia = svreinterpret_u64 (svabs_x (pg, x)); + svbool_t large = svacge (pg, x, d->large_bound); - /* Trigger special-cases for tiny, boring and infinity/NaN. */ - svbool_t special = svcmpgt (pg, svsub_x (pg, ia, d->tiny_bound), d->thresh); + /* We can use tanh(x) = (e^2x - 1) / (e^2x + 1) to approximate tanh. + As an additional optimisation, we can ensure more accurate values of e^x + by only using positive inputs. So we calculate tanh(|x|), and restore the + sign of the input before returning. */ + svfloat64_t ax = svabs_x (pg, x); + svuint64_t sign_bit + = sveor_x (pg, svreinterpret_u64 (x), svreinterpret_u64 (ax)); - svfloat64_t u = svadd_x (pg, x, x); + svfloat64_t p = e2xm1_inline (pg, ax, d); + svfloat64_t q = svadd_x (pg, p, 2); - /* tanh(x) = (e^2x - 1) / (e^2x + 1). */ - svfloat64_t q = expm1_inline (u, pg, d); - svfloat64_t qp2 = svadd_x (pg, q, 2); + /* For sufficiently high inputs, the result of tanh(|x|) is 1 when correctly + rounded, at this point we can return 1 directly, with sign correction. + This will also act as a guard against our approximation overflowing. */ + svfloat64_t y = svsel (large, sv_f64 (1.0), svdiv_x (pg, p, q)); - if (__glibc_unlikely (svptest_any (pg, special))) - return special_case (x, svdiv_x (pg, q, qp2), special); - return svdiv_x (pg, q, qp2); + return svreinterpret_f64 (svorr_x (pg, sign_bit, svreinterpret_u64 (y))); }