mirror of git://sourceware.org/git/glibc.git
math: New generic fma implementation
The current implementation relies on setting the rounding mode for
different calculations (first to FE_TONEAREST and then to FE_TOWARDZERO)
to obtain correctly rounded results. For most CPUs, this adds a significant
performance overhead since it requires executing a typically slow
instruction (to get/set the floating-point status), it necessitates
flushing the pipeline, and breaks some compiler assumptions/optimizations.
This patch introduces a new implementation originally written by Szabolcs
for musl, which utilizes mostly integer arithmetic. Floating-point
arithmetic is used to raise the expected exceptions, without the need for
fenv.h operations.
I added some changes compared to the original code:
* Fixed some signaling NaN issues when the 3-argument is NaN.
* Use math_uint128.h for the 64-bit multiplication operation. It allows
the compiler to use 128-bit types where available, which enables some
optimizations on certain targets (for instance, MIPS64).
* Fixed an arm32 issue where the libgcc routine might not respect the
rounding mode [1]. This can also be used on other targets to optimize
the conversion from int64_t to double.
* Use -fexcess-precision=standard on i686.
I tested this implementation on various targets (x86_64, i686, arm, aarch64,
powerpc), including some by manually disabling the compiler instructions.
Performance-wise, it shows large improvements:
reciprocal-throughput master patched improvement
x86_64 [2] 289.4640 22.4396 12.90x
i686 [2] 636.8660 169.3640 3.76x
aarch64 [3] 46.0020 11.3281 4.06x
armhf [3] 63.989 26.5056 2.41x
powerpc [4] 23.9332 6.40205 3.74x
latency master patched improvement
x86_64 293.7360 38.1478 7.70x
i686 658.4160 187.9940 3.50x
aarch64 44.5166 14.7157 3.03x
armhf 63.7678 28.4116 2.24x
power10 23.8561 11.4250 2.09x
Checked on x86_64-linux-gnu and i686-linux-gnu with —disable-multi-arch,
and on arm-linux-gnueabihf.
[1] https://gcc.gnu.org/bugzilla/show_bug.cgi?id=91970
[2] gcc 15.2.1, Zen3
[3] gcc 15.2.1, Neoverse N1
[4] gcc 15.2.1, POWER10
Signed-off-by: Szabolcs Nagy <nsz@gcc.gnu.org>
Co-authored-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: Wilco Dijkstra <Wilco.Dijkstra@arm.com>
This commit is contained in:
parent
5dab2a3195
commit
bf211c3499
|
|
@ -0,0 +1,32 @@
|
|||
/* Configure optimized libm functions. AArch64 version.
|
||||
Copyright (C) 2017-2025 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
The GNU C Library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with the GNU C Library; if not, see
|
||||
<https://www.gnu.org/licenses/>. */
|
||||
|
||||
#ifndef ARM_MATH_PRIVATE_H
|
||||
#define ARM_MATH_PRIVATE_H 1
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
/* For int64_t to double conversion, libgcc might not respect the rounding
|
||||
mode [1].
|
||||
|
||||
[1] https://gcc.gnu.org/bugzilla/show_bug.cgi?id=91970 */
|
||||
#define TOINT64_INTRINSICS 0
|
||||
|
||||
#include_next <math_private.h>
|
||||
|
||||
#endif
|
||||
|
|
@ -13,6 +13,7 @@ CFLAGS-e_gamma_r.c += -fexcess-precision=standard
|
|||
CFLAGS-s_erf.c += -fexcess-precision=standard
|
||||
CFLAGS-s_erfc.c += -fexcess-precision=standard
|
||||
CFLAGS-s_erf_common.c += -fexcess-precision=standard
|
||||
CFLAGS-s_fma.c += -fexcess-precision=standard
|
||||
endif
|
||||
|
||||
ifeq ($(subdir),gmon)
|
||||
|
|
|
|||
|
|
@ -85,6 +85,24 @@ static inline int32_t
|
|||
converttoint (double x);
|
||||
#endif
|
||||
|
||||
#ifndef TOINT64_INTRINSICS
|
||||
# define TOINT64_INTRINSICS 1
|
||||
#endif
|
||||
|
||||
static inline double convertfromint64 (int64_t a)
|
||||
{
|
||||
#if !TOINT64_INTRINSICS
|
||||
union { int64_t x; double d; } low = {.d = 0x1.0p52};
|
||||
|
||||
double high = (int32_t)(a >> 32) * 0x1.0p32;
|
||||
low.x |= a & INT64_C(0x00000000ffffffff);
|
||||
|
||||
return (high - 0x1.0p52) + low.d;
|
||||
#else
|
||||
return a;
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline uint64_t
|
||||
asuint64 (double f)
|
||||
{
|
||||
|
|
|
|||
|
|
@ -23,17 +23,51 @@
|
|||
#include <math.h>
|
||||
#undef dfmal
|
||||
#undef f32xfmaf64
|
||||
#include <fenv.h>
|
||||
#include <ieee754.h>
|
||||
#include <math-barriers.h>
|
||||
#include <fenv_private.h>
|
||||
#include <libm-alias-double.h>
|
||||
#include <math-narrow-alias.h>
|
||||
#include <tininess.h>
|
||||
#include <math-use-builtins.h>
|
||||
|
||||
/* This implementation uses rounding to odd to avoid problems with
|
||||
double rounding. See a paper by Boldo and Melquiond:
|
||||
http://www.lri.fr/~melquion/doc/08-tc.pdf */
|
||||
|
||||
#if !USE_FMA_BUILTIN
|
||||
# include <stdbit.h>
|
||||
# include "math_config.h"
|
||||
# include <math_uint128.h>
|
||||
|
||||
# define ZEROINFNAN (0x7ff - EXPONENT_BIAS - MANTISSA_WIDTH - 1)
|
||||
|
||||
struct num
|
||||
{
|
||||
uint64_t m;
|
||||
int e;
|
||||
int sign;
|
||||
};
|
||||
|
||||
static inline struct num normalize (double x)
|
||||
{
|
||||
uint64_t ix = asuint64 (x);
|
||||
int e = ix >> MANTISSA_WIDTH;
|
||||
int sign = e & 0x800;
|
||||
e &= 0x7ff;
|
||||
if (!e)
|
||||
{
|
||||
ix = asuint64 (x * 0x1p63);
|
||||
e = ix >> MANTISSA_WIDTH & 0x7ff;
|
||||
e = e ? e-63 : 0x800;
|
||||
}
|
||||
ix &= (UINT64_C(1) << MANTISSA_WIDTH) - 1;
|
||||
ix |= UINT64_C(1) << MANTISSA_WIDTH;
|
||||
ix <<= 1;
|
||||
e -= EXPONENT_BIAS + MANTISSA_WIDTH + 1;
|
||||
return (struct num){ix,e,sign};
|
||||
}
|
||||
|
||||
static void mul (uint64_t *hi, uint64_t *lo, uint64_t x, uint64_t y)
|
||||
{
|
||||
u128 r = u128_mul (u128_from_u64 (x), u128_from_u64 (y));
|
||||
*hi = u128_high (r);
|
||||
*lo = u128_low (r);
|
||||
}
|
||||
#endif
|
||||
|
||||
double
|
||||
__fma (double x, double y, double z)
|
||||
|
|
@ -41,271 +75,171 @@ __fma (double x, double y, double z)
|
|||
#if USE_FMA_BUILTIN
|
||||
return __builtin_fma (x, y, z);
|
||||
#else
|
||||
/* Use generic implementation. */
|
||||
union ieee754_double u, v, w;
|
||||
int adjust = 0;
|
||||
u.d = x;
|
||||
v.d = y;
|
||||
w.d = z;
|
||||
if (__builtin_expect (u.ieee.exponent + v.ieee.exponent
|
||||
>= 0x7ff + IEEE754_DOUBLE_BIAS - DBL_MANT_DIG, 0)
|
||||
|| __builtin_expect (u.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0)
|
||||
|| __builtin_expect (v.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0)
|
||||
|| __builtin_expect (w.ieee.exponent >= 0x7ff - DBL_MANT_DIG, 0)
|
||||
|| __builtin_expect (u.ieee.exponent + v.ieee.exponent
|
||||
<= IEEE754_DOUBLE_BIAS + DBL_MANT_DIG, 0))
|
||||
/* Normalize so top 10bits and last bit are 0 */
|
||||
struct num nx, ny, nz;
|
||||
nx = normalize (x);
|
||||
ny = normalize (y);
|
||||
nz = normalize (z);
|
||||
|
||||
if (nx.e >= ZEROINFNAN || ny.e >= ZEROINFNAN)
|
||||
return x * y + z;
|
||||
if (nz.e >= ZEROINFNAN)
|
||||
{
|
||||
/* If z is Inf, but x and y are finite, the result should be
|
||||
z rather than NaN. */
|
||||
if (w.ieee.exponent == 0x7ff
|
||||
&& u.ieee.exponent != 0x7ff
|
||||
&& v.ieee.exponent != 0x7ff)
|
||||
return (z + x) + y;
|
||||
/* If z is zero and x are y are nonzero, compute the result
|
||||
as x * y to avoid the wrong sign of a zero result if x * y
|
||||
underflows to 0. */
|
||||
if (z == 0 && x != 0 && y != 0)
|
||||
if (nz.e > ZEROINFNAN) /* z==0 */
|
||||
return x * y;
|
||||
/* If x or y or z is Inf/NaN, or if x * y is zero, compute as
|
||||
x * y + z. */
|
||||
if (u.ieee.exponent == 0x7ff
|
||||
|| v.ieee.exponent == 0x7ff
|
||||
|| w.ieee.exponent == 0x7ff
|
||||
|| x == 0
|
||||
|| y == 0)
|
||||
return x * y + z;
|
||||
/* If fma will certainly overflow, compute as x * y. */
|
||||
if (u.ieee.exponent + v.ieee.exponent > 0x7ff + IEEE754_DOUBLE_BIAS)
|
||||
return x * y;
|
||||
/* If x * y is less than 1/4 of DBL_TRUE_MIN, neither the
|
||||
result nor whether there is underflow depends on its exact
|
||||
value, only on its sign. */
|
||||
if (u.ieee.exponent + v.ieee.exponent
|
||||
< IEEE754_DOUBLE_BIAS - DBL_MANT_DIG - 2)
|
||||
else if (isnan (z))
|
||||
return __builtin_nan ("");
|
||||
return z;
|
||||
}
|
||||
|
||||
/* mul: r = x*y */
|
||||
uint64_t rhi, rlo, zhi, zlo;
|
||||
mul (&rhi, &rlo, nx.m, ny.m);
|
||||
/* Either top 20 or 21 bits of rhi and last 2 bits of rlo are 0 */
|
||||
|
||||
/* align exponents */
|
||||
int e = nx.e + ny.e;
|
||||
int d = nz.e - e;
|
||||
/* Shift bits z<<=kz, r>>=kr, so kz+kr == d, set e = e+kr (== ez-kz). */
|
||||
if (d > 0)
|
||||
{
|
||||
if (d < 64)
|
||||
{
|
||||
int neg = u.ieee.negative ^ v.ieee.negative;
|
||||
double tiny = neg ? -0x1p-1074 : 0x1p-1074;
|
||||
if (w.ieee.exponent >= 3)
|
||||
return tiny + z;
|
||||
/* Scaling up, adding TINY and scaling down produces the
|
||||
correct result, because in round-to-nearest mode adding
|
||||
TINY has no effect and in other modes double rounding is
|
||||
harmless. But it may not produce required underflow
|
||||
exceptions. */
|
||||
v.d = z * 0x1p54 + tiny;
|
||||
if (TININESS_AFTER_ROUNDING
|
||||
? v.ieee.exponent < 55
|
||||
: (w.ieee.exponent == 0
|
||||
|| (w.ieee.exponent == 1
|
||||
&& w.ieee.negative != neg
|
||||
&& w.ieee.mantissa1 == 0
|
||||
&& w.ieee.mantissa0 == 0)))
|
||||
zlo = nz.m << d;
|
||||
zhi = nz.m >> (64 - d);
|
||||
}
|
||||
else
|
||||
{
|
||||
zlo = 0;
|
||||
zhi = nz.m;
|
||||
e = nz.e - 64;
|
||||
d -= 64;
|
||||
if (d < 64)
|
||||
{
|
||||
double force_underflow = x * y;
|
||||
math_force_eval (force_underflow);
|
||||
rlo = rhi << (64 - d) | rlo >> d | !!(rlo << (64 - d));
|
||||
rhi = rhi >> d;
|
||||
}
|
||||
return v.d * 0x1p-54;
|
||||
}
|
||||
if (u.ieee.exponent + v.ieee.exponent
|
||||
>= 0x7ff + IEEE754_DOUBLE_BIAS - DBL_MANT_DIG)
|
||||
{
|
||||
/* Compute 1p-53 times smaller result and multiply
|
||||
at the end. */
|
||||
if (u.ieee.exponent > v.ieee.exponent)
|
||||
u.ieee.exponent -= DBL_MANT_DIG;
|
||||
else
|
||||
v.ieee.exponent -= DBL_MANT_DIG;
|
||||
/* If x + y exponent is very large and z exponent is very small,
|
||||
it doesn't matter if we don't adjust it. */
|
||||
if (w.ieee.exponent > DBL_MANT_DIG)
|
||||
w.ieee.exponent -= DBL_MANT_DIG;
|
||||
adjust = 1;
|
||||
}
|
||||
else if (w.ieee.exponent >= 0x7ff - DBL_MANT_DIG)
|
||||
{
|
||||
/* Similarly.
|
||||
If z exponent is very large and x and y exponents are
|
||||
very small, adjust them up to avoid spurious underflows,
|
||||
rather than down. */
|
||||
if (u.ieee.exponent + v.ieee.exponent
|
||||
<= IEEE754_DOUBLE_BIAS + 2 * DBL_MANT_DIG)
|
||||
{
|
||||
if (u.ieee.exponent > v.ieee.exponent)
|
||||
u.ieee.exponent += 2 * DBL_MANT_DIG + 2;
|
||||
else
|
||||
v.ieee.exponent += 2 * DBL_MANT_DIG + 2;
|
||||
rlo = 1;
|
||||
rhi = 0;
|
||||
}
|
||||
else if (u.ieee.exponent > v.ieee.exponent)
|
||||
{
|
||||
if (u.ieee.exponent > DBL_MANT_DIG)
|
||||
u.ieee.exponent -= DBL_MANT_DIG;
|
||||
}
|
||||
else if (v.ieee.exponent > DBL_MANT_DIG)
|
||||
v.ieee.exponent -= DBL_MANT_DIG;
|
||||
w.ieee.exponent -= DBL_MANT_DIG;
|
||||
adjust = 1;
|
||||
}
|
||||
else if (u.ieee.exponent >= 0x7ff - DBL_MANT_DIG)
|
||||
{
|
||||
u.ieee.exponent -= DBL_MANT_DIG;
|
||||
if (v.ieee.exponent)
|
||||
v.ieee.exponent += DBL_MANT_DIG;
|
||||
else
|
||||
v.d *= 0x1p53;
|
||||
}
|
||||
else if (v.ieee.exponent >= 0x7ff - DBL_MANT_DIG)
|
||||
{
|
||||
v.ieee.exponent -= DBL_MANT_DIG;
|
||||
if (u.ieee.exponent)
|
||||
u.ieee.exponent += DBL_MANT_DIG;
|
||||
else
|
||||
u.d *= 0x1p53;
|
||||
}
|
||||
else /* if (u.ieee.exponent + v.ieee.exponent
|
||||
<= IEEE754_DOUBLE_BIAS + DBL_MANT_DIG) */
|
||||
{
|
||||
if (u.ieee.exponent > v.ieee.exponent)
|
||||
u.ieee.exponent += 2 * DBL_MANT_DIG + 2;
|
||||
else
|
||||
v.ieee.exponent += 2 * DBL_MANT_DIG + 2;
|
||||
if (w.ieee.exponent <= 4 * DBL_MANT_DIG + 6)
|
||||
{
|
||||
if (w.ieee.exponent)
|
||||
w.ieee.exponent += 2 * DBL_MANT_DIG + 2;
|
||||
else
|
||||
w.d *= 0x1p108;
|
||||
adjust = -1;
|
||||
}
|
||||
/* Otherwise x * y should just affect inexact
|
||||
and nothing else. */
|
||||
}
|
||||
x = u.d;
|
||||
y = v.d;
|
||||
z = w.d;
|
||||
}
|
||||
|
||||
/* Ensure correct sign of exact 0 + 0. */
|
||||
if (__glibc_unlikely ((x == 0 || y == 0) && z == 0))
|
||||
{
|
||||
x = math_opt_barrier (x);
|
||||
return x * y + z;
|
||||
}
|
||||
|
||||
fenv_t env;
|
||||
libc_feholdexcept_setround (&env, FE_TONEAREST);
|
||||
|
||||
/* Multiplication m1 + m2 = x * y using Dekker's algorithm. */
|
||||
#define C ((1 << (DBL_MANT_DIG + 1) / 2) + 1)
|
||||
double x1 = x * C;
|
||||
double y1 = y * C;
|
||||
double m1 = x * y;
|
||||
x1 = (x - x1) + x1;
|
||||
y1 = (y - y1) + y1;
|
||||
double x2 = x - x1;
|
||||
double y2 = y - y1;
|
||||
double m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2;
|
||||
|
||||
/* Addition a1 + a2 = z + m1 using Knuth's algorithm. */
|
||||
double a1 = z + m1;
|
||||
double t1 = a1 - z;
|
||||
double t2 = a1 - t1;
|
||||
t1 = m1 - t1;
|
||||
t2 = z - t2;
|
||||
double a2 = t1 + t2;
|
||||
/* Ensure the arithmetic is not scheduled after feclearexcept call. */
|
||||
math_force_eval (m2);
|
||||
math_force_eval (a2);
|
||||
__feclearexcept (FE_INEXACT);
|
||||
|
||||
/* If the result is an exact zero, ensure it has the correct sign. */
|
||||
if (a1 == 0 && m2 == 0)
|
||||
{
|
||||
libc_feupdateenv (&env);
|
||||
/* Ensure that round-to-nearest value of z + m1 is not reused. */
|
||||
z = math_opt_barrier (z);
|
||||
return z + m1;
|
||||
}
|
||||
|
||||
libc_fesetround (FE_TOWARDZERO);
|
||||
|
||||
/* Perform m2 + a2 addition with round to odd. */
|
||||
u.d = a2 + m2;
|
||||
|
||||
if (__glibc_unlikely (adjust < 0))
|
||||
{
|
||||
if ((u.ieee.mantissa1 & 1) == 0)
|
||||
u.ieee.mantissa1 |= libc_fetestexcept (FE_INEXACT) != 0;
|
||||
v.d = a1 + u.d;
|
||||
/* Ensure the addition is not scheduled after fetestexcept call. */
|
||||
math_force_eval (v.d);
|
||||
}
|
||||
|
||||
/* Reset rounding mode and test for inexact simultaneously. */
|
||||
int j = libc_feupdateenv_test (&env, FE_INEXACT) != 0;
|
||||
|
||||
/* Ensure value of a1 + u.d is not reused. */
|
||||
a1 = math_opt_barrier (a1);
|
||||
|
||||
if (__glibc_likely (adjust == 0))
|
||||
{
|
||||
if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7ff)
|
||||
u.ieee.mantissa1 |= j;
|
||||
/* Result is a1 + u.d. */
|
||||
return a1 + u.d;
|
||||
}
|
||||
else if (__glibc_likely (adjust > 0))
|
||||
{
|
||||
if ((u.ieee.mantissa1 & 1) == 0 && u.ieee.exponent != 0x7ff)
|
||||
u.ieee.mantissa1 |= j;
|
||||
/* Result is a1 + u.d, scaled up. */
|
||||
return (a1 + u.d) * 0x1p53;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* If a1 + u.d is exact, the only rounding happens during
|
||||
scaling down. */
|
||||
if (j == 0)
|
||||
return v.d * 0x1p-108;
|
||||
/* If result rounded to zero is not subnormal, no double
|
||||
rounding will occur. */
|
||||
if (v.ieee.exponent > 108)
|
||||
return (a1 + u.d) * 0x1p-108;
|
||||
/* If v.d * 0x1p-108 with round to zero is a subnormal above
|
||||
or equal to DBL_MIN / 2, then v.d * 0x1p-108 shifts mantissa
|
||||
down just by 1 bit, which means v.ieee.mantissa1 |= j would
|
||||
change the round bit, not sticky or guard bit.
|
||||
v.d * 0x1p-108 never normalizes by shifting up,
|
||||
so round bit plus sticky bit should be already enough
|
||||
for proper rounding. */
|
||||
if (v.ieee.exponent == 108)
|
||||
{
|
||||
/* If the exponent would be in the normal range when
|
||||
rounding to normal precision with unbounded exponent
|
||||
range, the exact result is known and spurious underflows
|
||||
must be avoided on systems detecting tininess after
|
||||
rounding. */
|
||||
if (TININESS_AFTER_ROUNDING)
|
||||
{
|
||||
w.d = a1 + u.d;
|
||||
if (w.ieee.exponent == 109)
|
||||
return w.d * 0x1p-108;
|
||||
}
|
||||
/* v.ieee.mantissa1 & 2 is LSB bit of the result before rounding,
|
||||
v.ieee.mantissa1 & 1 is the round bit and j is our sticky
|
||||
bit. */
|
||||
w.d = 0.0;
|
||||
w.ieee.mantissa1 = ((v.ieee.mantissa1 & 3) << 1) | j;
|
||||
w.ieee.negative = v.ieee.negative;
|
||||
v.ieee.mantissa1 &= ~3U;
|
||||
v.d *= 0x1p-108;
|
||||
w.d *= 0x1p-2;
|
||||
return v.d + w.d;
|
||||
}
|
||||
v.ieee.mantissa1 |= j;
|
||||
return v.d * 0x1p-108;
|
||||
zhi = 0;
|
||||
d = -d;
|
||||
if (d == 0)
|
||||
zlo = nz.m;
|
||||
else if (d < 64)
|
||||
zlo = nz.m >> d | !!(nz.m << (64 - d));
|
||||
else
|
||||
zlo = 1;
|
||||
}
|
||||
|
||||
/* add */
|
||||
int sign = nx.sign ^ ny.sign;
|
||||
bool samesign = !(sign ^ nz.sign);
|
||||
bool nonzero = true;
|
||||
if (samesign)
|
||||
{
|
||||
/* r += z */
|
||||
rlo += zlo;
|
||||
rhi += zhi + (rlo < zlo);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* r -= z */
|
||||
uint64_t t = rlo;
|
||||
rlo -= zlo;
|
||||
rhi = rhi - zhi - (t < rlo);
|
||||
if (rhi >> 63)
|
||||
{
|
||||
rlo = -rlo;
|
||||
rhi = -rhi - !!rlo;
|
||||
sign = !sign;
|
||||
}
|
||||
nonzero = !!rhi;
|
||||
}
|
||||
|
||||
/* Set rhi to top 63bit of the result (last bit is sticky). */
|
||||
if (nonzero)
|
||||
{
|
||||
e += 64;
|
||||
d = stdc_leading_zeros (rhi) - 1;
|
||||
/* note: d > 0 */
|
||||
rhi = rhi << d | rlo >> (64 - d) | !!(rlo << d);
|
||||
}
|
||||
else if (rlo)
|
||||
{
|
||||
d = stdc_leading_zeros (rlo) - 1;
|
||||
if (d < 0)
|
||||
rhi = rlo >> 1 | (rlo & 1);
|
||||
else
|
||||
rhi = rlo << d;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Exact +-0 */
|
||||
return x * y + z;
|
||||
}
|
||||
e -= d;
|
||||
|
||||
/* Convert to double. */
|
||||
int64_t i = rhi; /* i is in [1<<62,(1<<63)-1] */
|
||||
if (sign)
|
||||
i = -i;
|
||||
double r = convertfromint64 (i); /* |r| is in [0x1p62,0x1p63] */
|
||||
|
||||
if (e < -1022 - 62)
|
||||
{
|
||||
/* Result is subnormal before rounding. */
|
||||
if (e == -1022 - 63)
|
||||
{
|
||||
double c = 0x1p63;
|
||||
if (sign)
|
||||
c = -c;
|
||||
if (r == c)
|
||||
{
|
||||
/* Min normal after rounding, underflow depends
|
||||
on arch behaviour which can be imitated by
|
||||
a double to float conversion. */
|
||||
float fltmin = 0x0.ffffff8p-63 * FLT_MIN * r;
|
||||
return DBL_MIN / FLT_MIN * fltmin;
|
||||
}
|
||||
/* One bit is lost when scaled, add another top bit to
|
||||
only round once at conversion if it is inexact. */
|
||||
if (rhi << 53)
|
||||
{
|
||||
i = rhi >> 1 | (rhi & 1) | 1ull << 62;
|
||||
if (sign)
|
||||
i = -i;
|
||||
r = convertfromint64 (i);
|
||||
r = 2 * r - c; /* remove top bit */
|
||||
|
||||
/* Raise underflow portably, such that it
|
||||
cannot be optimized away. */
|
||||
{
|
||||
double_t tiny = DBL_MIN / FLT_MIN * r;
|
||||
r += (double) (tiny * tiny) * (r - r);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Only round once when scaled. */
|
||||
d = 10;
|
||||
i = (rhi >> d | !!(rhi << (64 - d))) << d;
|
||||
if (sign)
|
||||
i = -i;
|
||||
r = convertfromint64 (i);
|
||||
}
|
||||
}
|
||||
return __scalbn (r, e);
|
||||
#endif /* ! USE_FMA_BUILTIN */
|
||||
}
|
||||
|
||||
#ifndef __fma
|
||||
libm_alias_double (__fma, fma)
|
||||
libm_alias_double_narrow (__fma, fma)
|
||||
|
|
|
|||
Loading…
Reference in New Issue