math: Use an improved algorithm for hypotl (ldbl-96)

This implementation is based on 'An Improved Algorithm for hypot(a,b)'
by Carlos F. Borges [1] using the MyHypot3 with the following changes:

 - Handle qNaN and sNaN.
 - Tune the 'widely varying operands' to avoid spurious underflow
   due the multiplication and fix the return value for upwards
   rounding mode.
 - Handle required underflow exception for subnormal results.

The main advantage of the new algorithm is its precision.  With a
random 1e8 input pairs in the range of [LDBL_MIN, LDBL_MAX], glibc
current implementation shows around 0.02% results with an error of
1 ulp (23158 results) while the new implementation only shows
0.0001% of total (111).

[1] https://arxiv.org/pdf/1904.09481.pdf
This commit is contained in:
Adhemerval Zanella 2021-04-05 17:28:48 -03:00
parent ccfa865a82
commit aa9c28cde3
1 changed files with 96 additions and 131 deletions

View File

@ -1,142 +1,107 @@
/* e_hypotl.c -- long double version of e_hypot.c. /* Euclidean distance function. Long Double/Binary96 version.
*/ Copyright (C) 2021 Free Software Foundation, Inc.
This file is part of the GNU C Library.
/* The GNU C Library is free software; you can redistribute it and/or
* ==================================================== modify it under the terms of the GNU Lesser General Public
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_hypotl(x,y) The GNU C Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* Method : MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* If (assume round-to-nearest) z=x*x+y*y Lesser General Public License for more details.
* has error less than sqrt(2)/2 ulp, than
* sqrt(z) has error less than 1 ulp (exercise). You should have received a copy of the GNU Lesser General Public
* License along with the GNU C Library; if not, see
* So, compute sqrt(x*x+y*y) with some care as <https://www.gnu.org/licenses/>. */
* follows to get the error below 1 ulp:
* /* This implementation is based on 'An Improved Algorithm for hypot(a,b)' by
* Assume x>y>0; Carlos F. Borges [1] using the MyHypot3 with the following changes:
* (if possible, set rounding to round-to-nearest)
* 1. if x > 2y use - Handle qNaN and sNaN.
* x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y - Tune the 'widely varying operands' to avoid spurious underflow
* where x1 = x with lower 32 bits cleared, x2 = x-x1; else due the multiplication and fix the return value for upwards
* 2. if x <= 2y use rounding mode.
* t1*y1+((x-y)*(x-y)+(t1*y2+t2*y)) - Handle required underflow exception for subnormal results.
* where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
* y1= y with lower 32 bits chopped, y2 = y-y1. [1] https://arxiv.org/pdf/1904.09481.pdf */
*
* NOTE: scaling may be necessary if some argument is too
* large or too tiny
*
* Special cases:
* hypot(x,y) is INF if x or y is +INF or -INF; else
* hypot(x,y) is NAN if x or y is NAN.
*
* Accuracy:
* hypot(x,y) returns sqrt(x^2+y^2) with error less
* than 1 ulps (units in the last place)
*/
#include <math.h> #include <math.h>
#include <math_private.h> #include <math_private.h>
#include <math-underflow.h> #include <math-underflow.h>
#include <libm-alias-finite.h> #include <libm-alias-finite.h>
long double __ieee754_hypotl(long double x, long double y) #define SCALE 0x8p-8257L
{ #define LARGE_VAL 0xb.504f333f9de6484p+8188L
long double a,b,t1,t2,y1,y2,w; #define TINY_VAL 0x8p-8194L
uint32_t j,k,ea,eb; #define EPS 0x8p-68L
GET_LDOUBLE_EXP(ea,x); /* Hypot kernel. The inputs must be adjusted so that ax >= ay >= 0
ea &= 0x7fff; and squaring ax, ay and (ax - ay) does not overflow or underflow. */
GET_LDOUBLE_EXP(eb,y); static inline long double
eb &= 0x7fff; kernel (long double ax, long double ay)
if(eb > ea) {a=y;b=x;j=ea; ea=eb;eb=j;} else {a=x;b=y;} {
SET_LDOUBLE_EXP(a,ea); /* a <- |a| */ long double t1, t2;
SET_LDOUBLE_EXP(b,eb); /* b <- |b| */ long double h = sqrtl (ax * ax + ay * ay);
if((ea-eb)>0x46) {return a+b;} /* x/y > 2**70 */ if (h <= 2.0L * ay)
k=0; {
if(__builtin_expect(ea > 0x5f3f,0)) { /* a>2**8000 */ long double delta = h - ay;
if(ea == 0x7fff) { /* Inf or NaN */ t1 = ax * (2.0L * delta - ax);
uint32_t exp __attribute__ ((unused)); t2 = (delta - 2.0L * (ax - ay)) * delta;
uint32_t high,low; }
w = a+b; /* for sNaN */ else
if (issignaling (a) || issignaling (b)) {
return w; long double delta = h - ax;
GET_LDOUBLE_WORDS(exp,high,low,a); t1 = 2.0L * delta * (ax - 2.0L * ay);
if(((high&0x7fffffff)|low)==0) w = a; t2 = (4.0L * delta - ay) * ay + delta * delta;
GET_LDOUBLE_WORDS(exp,high,low,b); }
if(((eb^0x7fff)|(high&0x7fffffff)|low)==0) w = b;
return w; h -= (t1 + t2) / (2.0L * h);
} return h;
/* scale a and b by 2**-9600 */ }
ea -= 0x2580; eb -= 0x2580; k += 9600;
SET_LDOUBLE_EXP(a,ea); long double
SET_LDOUBLE_EXP(b,eb); __ieee754_hypotl (long double x, long double y)
} {
if(__builtin_expect(eb < 0x20bf, 0)) { /* b < 2**-8000 */ if (!isfinite(x) || !isfinite(y))
if(eb == 0) { /* subnormal b or 0 */ {
uint32_t exp __attribute__ ((unused)); if ((isinf (x) || isinf (y))
uint32_t high,low; && !issignaling (x) && !issignaling (y))
GET_LDOUBLE_WORDS(exp,high,low,b); return INFINITY;
if((high|low)==0) return a; return x + y;
SET_LDOUBLE_WORDS(t1, 0x7ffd, 0x80000000, 0); /* t1=2^16382 */ }
b *= t1;
a *= t1; x = fabsl (x);
k -= 16382; y = fabsl (y);
GET_LDOUBLE_EXP (ea, a);
GET_LDOUBLE_EXP (eb, b); long double ax = x < y ? y : x;
if (eb > ea) long double ay = x < y ? x : y;
{
t1 = a; /* If ax is huge, scale both inputs down. */
a = b; if (__glibc_unlikely (ax > LARGE_VAL))
b = t1; {
j = ea; if (__glibc_unlikely (ay <= ax * EPS))
ea = eb; return ax + ay;
eb = j;
} return kernel (ax * SCALE, ay * SCALE) / SCALE;
} else { /* scale a and b by 2^9600 */ }
ea += 0x2580; /* a *= 2^9600 */
eb += 0x2580; /* b *= 2^9600 */ /* If ay is tiny, scale both inputs up. */
k -= 9600; if (__glibc_unlikely (ay < TINY_VAL))
SET_LDOUBLE_EXP(a,ea); {
SET_LDOUBLE_EXP(b,eb); if (__glibc_unlikely (ax >= ay / EPS))
} return ax + ay;
}
/* medium size a and b */ ax = kernel (ax / SCALE, ay / SCALE) * SCALE;
w = a-b; math_check_force_underflow_nonneg (ax);
if (w>b) { return ax;
uint32_t high; }
GET_LDOUBLE_MSW(high,a);
SET_LDOUBLE_WORDS(t1,ea,high,0); /* Common case: ax is not huge and ay is not tiny. */
t2 = a-t1; if (__glibc_unlikely (ay <= ax * EPS))
w = sqrtl(t1*t1-(b*(-b)-t2*(a+t1))); return ax + ay;
} else {
uint32_t high; return kernel (ax, ay);
GET_LDOUBLE_MSW(high,b);
a = a+a;
SET_LDOUBLE_WORDS(y1,eb,high,0);
y2 = b - y1;
GET_LDOUBLE_MSW(high,a);
SET_LDOUBLE_WORDS(t1,ea+1,high,0);
t2 = a - t1;
w = sqrtl(t1*y1-(w*(-w)-(t1*y2+t2*b)));
}
if(k!=0) {
uint32_t exp;
t1 = 1.0;
GET_LDOUBLE_EXP(exp,t1);
SET_LDOUBLE_EXP(t1,exp+k);
w *= t1;
math_check_force_underflow_nonneg (w);
return w;
} else return w;
} }
libm_alias_finite (__ieee754_hypotl, __hypotl) libm_alias_finite (__ieee754_hypotl, __hypotl)