mirror of git://sourceware.org/git/glibc.git
Merge mktime, timegm from upstream Gnulib
[BZ #23603][BZ #16346] This fixes some obscure problems with integer overflow. Although it looks scary, it is almost all a byte-for-byte copy from Gnulib, and the Gnulib code has been tested reasonably well. * include/intprops.h: New file, copied from Gnulib. * include/verify.h, time/mktime-internal.h: New tiny files, simplified from Gnulib. * time/mktime.c: Copy from Gnulib. This has the following changes: Do not include config.h if DEBUG_MKTIME is nonzero. Include stdbool.h, intprops.h, verify.h. Include string.h only if needed. Include stdlib.h on MS-Windows. Include mktime-internal.h. (DEBUG_MKTIME): Default to 0, and simplify later uses. (NEED_MKTIME_INTERNAL, NEED_MKTIME_WINDOWS) (NEED_MKTIME_WORKING): Give default values to pacify -Wundef, which glibc uses. Default NEED_MKTIME_WORKING to DEBUG_MKTIME, to simplify later conditionals; default the others to zero. Use these conditionals to express only the code needed on the current platform. In uses of these conditionals, explicitly spell out how _LIBC affects things, so it’s easier to review from a glibc viewpoint. (WRAPV): Remove; no longer needed now that we have systematic overflow checking. (my_tzset, __tzset) [!_LIBC]: New function and macro, to better compartmentalize tzset issues. Move system-dependent tzsettish code here from mktime. (verify): Remove; now done by verify.h. All uses changed. (long_int): Use a more-conservative definition, to avoid integer overflow. (SHR): Remove, replacing with ... (shr): New function, which means we needn’t worry about side effects in args, and conversion analysis is simpler. (TYPE_IS_INTEGER, TYPE_TWOS_COMPLEMENT, TYPE_SIGNED, TYPE_MINIMUM) (TYPE_MAXIMUM, TIME_T_MIN, TIME_T_MAX, TIME_T_MIDPOINT) (time_t_avg, time_t_add_ok): Remove. (mktime_min, mktime_max): New constants. (leapyear, isdst_differ): Use bool for booleans. (ydhms_diff, guess_time_tm, ranged_convert, __mktime_internal): Use long_int, not time_t, for mktime differences. (long_int_avg): New function, replacing time_t_avg. INT_ADD_WRAPV replaces time_t_add_ok. (guess_time_tm): 6th arg is now long_int, not time_t const *. All uses changed. (convert_time): New function. (ranged_convert): Use it. (__mktime_internal): Last arg now points to mktime_offset_t, not time_t. All uses changed. This is a no-op on glibc, where mktime_offset_t is always time_t. Use int, not time_t, for UTC offset guess. Directly check for integer overflow instead of using a heuristic that works only 99.9...% of the time. Access *OFFSET only once, to avoid an unlikely race if the compiler delays a load and if this cascades into a signed integer overflow. (mktime): Move tzsettish code to my_tzset, and move localtime_offset to within mktime so that it doesn’t need a separate ifdef. (main) [DEBUG_MKTIME]: Speed up by using localtime_r instead of localtime. * time/timegm.c: Copy from Gnulib. This has the following changes: Include mktime-internal.h. [!_LIBC]: Include config.h and time.h. Do not include timegm.h or time_r.h. Make __mktime_internal a macro, and include mktime-internal.h to get its declaration. (timegm): Temporary is now mktime_offset_t, not time_t. This affects only Gnulib.
This commit is contained in:
parent
83a552b0bb
commit
8e6fd2bdb2
70
ChangeLog
70
ChangeLog
|
@ -1,3 +1,73 @@
|
|||
2018-09-19 Paul Eggert <eggert@cs.ucla.edu>
|
||||
|
||||
Merge mktime, timegm from upstream Gnulib
|
||||
[BZ #23603][BZ #16346]
|
||||
This fixes some obscure problems with integer overflow.
|
||||
Although it looks scary, it is almost all a byte-for-byte copy
|
||||
from Gnulib, and the Gnulib code has been tested reasonably well.
|
||||
* include/intprops.h: New file, copied from Gnulib.
|
||||
* include/verify.h, time/mktime-internal.h:
|
||||
New tiny files, simplified from Gnulib.
|
||||
* time/mktime.c: Copy from Gnulib. This has the following changes:
|
||||
Do not include config.h if DEBUG_MKTIME is nonzero.
|
||||
Include stdbool.h, intprops.h, verify.h.
|
||||
Include string.h only if needed.
|
||||
Include stdlib.h on MS-Windows.
|
||||
Include mktime-internal.h.
|
||||
(DEBUG_MKTIME): Default to 0, and simplify later uses.
|
||||
(NEED_MKTIME_INTERNAL, NEED_MKTIME_WINDOWS)
|
||||
(NEED_MKTIME_WORKING): Give default values to pacify -Wundef,
|
||||
which glibc uses. Default NEED_MKTIME_WORKING to DEBUG_MKTIME, to
|
||||
simplify later conditionals; default the others to zero. Use
|
||||
these conditionals to express only the code needed on the current
|
||||
platform. In uses of these conditionals, explicitly spell out how
|
||||
_LIBC affects things, so it’s easier to review from a glibc
|
||||
viewpoint.
|
||||
(WRAPV): Remove; no longer needed now that we have
|
||||
systematic overflow checking.
|
||||
(my_tzset, __tzset) [!_LIBC]: New function and macro, to better
|
||||
compartmentalize tzset issues. Move system-dependent tzsettish
|
||||
code here from mktime.
|
||||
(verify): Remove; now done by verify.h. All uses changed.
|
||||
(long_int): Use a more-conservative definition, to avoid
|
||||
integer overflow.
|
||||
(SHR): Remove, replacing with ...
|
||||
(shr): New function, which means we needn’t worry about side
|
||||
effects in args, and conversion analysis is simpler.
|
||||
(TYPE_IS_INTEGER, TYPE_TWOS_COMPLEMENT, TYPE_SIGNED, TYPE_MINIMUM)
|
||||
(TYPE_MAXIMUM, TIME_T_MIN, TIME_T_MAX, TIME_T_MIDPOINT)
|
||||
(time_t_avg, time_t_add_ok): Remove.
|
||||
(mktime_min, mktime_max): New constants.
|
||||
(leapyear, isdst_differ): Use bool for booleans.
|
||||
(ydhms_diff, guess_time_tm, ranged_convert, __mktime_internal):
|
||||
Use long_int, not time_t, for mktime differences.
|
||||
(long_int_avg): New function, replacing time_t_avg.
|
||||
INT_ADD_WRAPV replaces time_t_add_ok.
|
||||
(guess_time_tm): 6th arg is now long_int, not time_t const *.
|
||||
All uses changed.
|
||||
(convert_time): New function.
|
||||
(ranged_convert): Use it.
|
||||
(__mktime_internal): Last arg now points to mktime_offset_t, not
|
||||
time_t. All uses changed. This is a no-op on glibc, where
|
||||
mktime_offset_t is always time_t. Use int, not time_t, for UTC
|
||||
offset guess. Directly check for integer overflow instead of
|
||||
using a heuristic that works only 99.9...% of the time.
|
||||
Access *OFFSET only once, to avoid an unlikely race if the
|
||||
compiler delays a load and if this cascades into a signed integer
|
||||
overflow.
|
||||
(mktime): Move tzsettish code to my_tzset, and move
|
||||
localtime_offset to within mktime so that it doesn’t
|
||||
need a separate ifdef.
|
||||
(main) [DEBUG_MKTIME]: Speed up by using localtime_r
|
||||
instead of localtime.
|
||||
* time/timegm.c: Copy from Gnulib. This has the following changes:
|
||||
Include mktime-internal.h.
|
||||
[!_LIBC]: Include config.h and time.h. Do not include
|
||||
timegm.h or time_r.h. Make __mktime_internal a macro,
|
||||
and include mktime-internal.h to get its declaration.
|
||||
(timegm): Temporary is now mktime_offset_t, not time_t.
|
||||
This affects only Gnulib.
|
||||
|
||||
2018-09-19 Wilco Dijkstra <wdijkstr@arm.com>
|
||||
|
||||
[BZ #23637]
|
||||
|
|
|
@ -0,0 +1,455 @@
|
|||
/* intprops.h -- properties of integer types
|
||||
|
||||
Copyright (C) 2001-2018 Free Software Foundation, Inc.
|
||||
|
||||
This program is free software: you can redistribute it and/or modify it
|
||||
under the terms of the GNU Lesser General Public License as published
|
||||
by the Free Software Foundation; either version 2.1 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>. */
|
||||
|
||||
/* Written by Paul Eggert. */
|
||||
|
||||
#ifndef _GL_INTPROPS_H
|
||||
#define _GL_INTPROPS_H
|
||||
|
||||
#include <limits.h>
|
||||
|
||||
/* Return a value with the common real type of E and V and the value of V.
|
||||
Do not evaluate E. */
|
||||
#define _GL_INT_CONVERT(e, v) ((1 ? 0 : (e)) + (v))
|
||||
|
||||
/* Act like _GL_INT_CONVERT (E, -V) but work around a bug in IRIX 6.5 cc; see
|
||||
<https://lists.gnu.org/r/bug-gnulib/2011-05/msg00406.html>. */
|
||||
#define _GL_INT_NEGATE_CONVERT(e, v) ((1 ? 0 : (e)) - (v))
|
||||
|
||||
/* The extra casts in the following macros work around compiler bugs,
|
||||
e.g., in Cray C 5.0.3.0. */
|
||||
|
||||
/* True if the arithmetic type T is an integer type. bool counts as
|
||||
an integer. */
|
||||
#define TYPE_IS_INTEGER(t) ((t) 1.5 == 1)
|
||||
|
||||
/* True if the real type T is signed. */
|
||||
#define TYPE_SIGNED(t) (! ((t) 0 < (t) -1))
|
||||
|
||||
/* Return 1 if the real expression E, after promotion, has a
|
||||
signed or floating type. Do not evaluate E. */
|
||||
#define EXPR_SIGNED(e) (_GL_INT_NEGATE_CONVERT (e, 1) < 0)
|
||||
|
||||
|
||||
/* Minimum and maximum values for integer types and expressions. */
|
||||
|
||||
/* The width in bits of the integer type or expression T.
|
||||
Do not evaluate T.
|
||||
Padding bits are not supported; this is checked at compile-time below. */
|
||||
#define TYPE_WIDTH(t) (sizeof (t) * CHAR_BIT)
|
||||
|
||||
/* The maximum and minimum values for the integer type T. */
|
||||
#define TYPE_MINIMUM(t) ((t) ~ TYPE_MAXIMUM (t))
|
||||
#define TYPE_MAXIMUM(t) \
|
||||
((t) (! TYPE_SIGNED (t) \
|
||||
? (t) -1 \
|
||||
: ((((t) 1 << (TYPE_WIDTH (t) - 2)) - 1) * 2 + 1)))
|
||||
|
||||
/* The maximum and minimum values for the type of the expression E,
|
||||
after integer promotion. E is not evaluated. */
|
||||
#define _GL_INT_MINIMUM(e) \
|
||||
(EXPR_SIGNED (e) \
|
||||
? ~ _GL_SIGNED_INT_MAXIMUM (e) \
|
||||
: _GL_INT_CONVERT (e, 0))
|
||||
#define _GL_INT_MAXIMUM(e) \
|
||||
(EXPR_SIGNED (e) \
|
||||
? _GL_SIGNED_INT_MAXIMUM (e) \
|
||||
: _GL_INT_NEGATE_CONVERT (e, 1))
|
||||
#define _GL_SIGNED_INT_MAXIMUM(e) \
|
||||
(((_GL_INT_CONVERT (e, 1) << (TYPE_WIDTH ((e) + 0) - 2)) - 1) * 2 + 1)
|
||||
|
||||
/* Work around OpenVMS incompatibility with C99. */
|
||||
#if !defined LLONG_MAX && defined __INT64_MAX
|
||||
# define LLONG_MAX __INT64_MAX
|
||||
# define LLONG_MIN __INT64_MIN
|
||||
#endif
|
||||
|
||||
/* This include file assumes that signed types are two's complement without
|
||||
padding bits; the above macros have undefined behavior otherwise.
|
||||
If this is a problem for you, please let us know how to fix it for your host.
|
||||
This assumption is tested by the intprops-tests module. */
|
||||
|
||||
/* Does the __typeof__ keyword work? This could be done by
|
||||
'configure', but for now it's easier to do it by hand. */
|
||||
#if (2 <= __GNUC__ \
|
||||
|| (1210 <= __IBMC__ && defined __IBM__TYPEOF__) \
|
||||
|| (0x5110 <= __SUNPRO_C && !__STDC__))
|
||||
# define _GL_HAVE___TYPEOF__ 1
|
||||
#else
|
||||
# define _GL_HAVE___TYPEOF__ 0
|
||||
#endif
|
||||
|
||||
/* Return 1 if the integer type or expression T might be signed. Return 0
|
||||
if it is definitely unsigned. This macro does not evaluate its argument,
|
||||
and expands to an integer constant expression. */
|
||||
#if _GL_HAVE___TYPEOF__
|
||||
# define _GL_SIGNED_TYPE_OR_EXPR(t) TYPE_SIGNED (__typeof__ (t))
|
||||
#else
|
||||
# define _GL_SIGNED_TYPE_OR_EXPR(t) 1
|
||||
#endif
|
||||
|
||||
/* Bound on length of the string representing an unsigned integer
|
||||
value representable in B bits. log10 (2.0) < 146/485. The
|
||||
smallest value of B where this bound is not tight is 2621. */
|
||||
#define INT_BITS_STRLEN_BOUND(b) (((b) * 146 + 484) / 485)
|
||||
|
||||
/* Bound on length of the string representing an integer type or expression T.
|
||||
Subtract 1 for the sign bit if T is signed, and then add 1 more for
|
||||
a minus sign if needed.
|
||||
|
||||
Because _GL_SIGNED_TYPE_OR_EXPR sometimes returns 0 when its argument is
|
||||
signed, this macro may overestimate the true bound by one byte when
|
||||
applied to unsigned types of size 2, 4, 16, ... bytes. */
|
||||
#define INT_STRLEN_BOUND(t) \
|
||||
(INT_BITS_STRLEN_BOUND (TYPE_WIDTH (t) - _GL_SIGNED_TYPE_OR_EXPR (t)) \
|
||||
+ _GL_SIGNED_TYPE_OR_EXPR (t))
|
||||
|
||||
/* Bound on buffer size needed to represent an integer type or expression T,
|
||||
including the terminating null. */
|
||||
#define INT_BUFSIZE_BOUND(t) (INT_STRLEN_BOUND (t) + 1)
|
||||
|
||||
|
||||
/* Range overflow checks.
|
||||
|
||||
The INT_<op>_RANGE_OVERFLOW macros return 1 if the corresponding C
|
||||
operators might not yield numerically correct answers due to
|
||||
arithmetic overflow. They do not rely on undefined or
|
||||
implementation-defined behavior. Their implementations are simple
|
||||
and straightforward, but they are a bit harder to use than the
|
||||
INT_<op>_OVERFLOW macros described below.
|
||||
|
||||
Example usage:
|
||||
|
||||
long int i = ...;
|
||||
long int j = ...;
|
||||
if (INT_MULTIPLY_RANGE_OVERFLOW (i, j, LONG_MIN, LONG_MAX))
|
||||
printf ("multiply would overflow");
|
||||
else
|
||||
printf ("product is %ld", i * j);
|
||||
|
||||
Restrictions on *_RANGE_OVERFLOW macros:
|
||||
|
||||
These macros do not check for all possible numerical problems or
|
||||
undefined or unspecified behavior: they do not check for division
|
||||
by zero, for bad shift counts, or for shifting negative numbers.
|
||||
|
||||
These macros may evaluate their arguments zero or multiple times,
|
||||
so the arguments should not have side effects. The arithmetic
|
||||
arguments (including the MIN and MAX arguments) must be of the same
|
||||
integer type after the usual arithmetic conversions, and the type
|
||||
must have minimum value MIN and maximum MAX. Unsigned types should
|
||||
use a zero MIN of the proper type.
|
||||
|
||||
These macros are tuned for constant MIN and MAX. For commutative
|
||||
operations such as A + B, they are also tuned for constant B. */
|
||||
|
||||
/* Return 1 if A + B would overflow in [MIN,MAX] arithmetic.
|
||||
See above for restrictions. */
|
||||
#define INT_ADD_RANGE_OVERFLOW(a, b, min, max) \
|
||||
((b) < 0 \
|
||||
? (a) < (min) - (b) \
|
||||
: (max) - (b) < (a))
|
||||
|
||||
/* Return 1 if A - B would overflow in [MIN,MAX] arithmetic.
|
||||
See above for restrictions. */
|
||||
#define INT_SUBTRACT_RANGE_OVERFLOW(a, b, min, max) \
|
||||
((b) < 0 \
|
||||
? (max) + (b) < (a) \
|
||||
: (a) < (min) + (b))
|
||||
|
||||
/* Return 1 if - A would overflow in [MIN,MAX] arithmetic.
|
||||
See above for restrictions. */
|
||||
#define INT_NEGATE_RANGE_OVERFLOW(a, min, max) \
|
||||
((min) < 0 \
|
||||
? (a) < - (max) \
|
||||
: 0 < (a))
|
||||
|
||||
/* Return 1 if A * B would overflow in [MIN,MAX] arithmetic.
|
||||
See above for restrictions. Avoid && and || as they tickle
|
||||
bugs in Sun C 5.11 2010/08/13 and other compilers; see
|
||||
<https://lists.gnu.org/r/bug-gnulib/2011-05/msg00401.html>. */
|
||||
#define INT_MULTIPLY_RANGE_OVERFLOW(a, b, min, max) \
|
||||
((b) < 0 \
|
||||
? ((a) < 0 \
|
||||
? (a) < (max) / (b) \
|
||||
: (b) == -1 \
|
||||
? 0 \
|
||||
: (min) / (b) < (a)) \
|
||||
: (b) == 0 \
|
||||
? 0 \
|
||||
: ((a) < 0 \
|
||||
? (a) < (min) / (b) \
|
||||
: (max) / (b) < (a)))
|
||||
|
||||
/* Return 1 if A / B would overflow in [MIN,MAX] arithmetic.
|
||||
See above for restrictions. Do not check for division by zero. */
|
||||
#define INT_DIVIDE_RANGE_OVERFLOW(a, b, min, max) \
|
||||
((min) < 0 && (b) == -1 && (a) < - (max))
|
||||
|
||||
/* Return 1 if A % B would overflow in [MIN,MAX] arithmetic.
|
||||
See above for restrictions. Do not check for division by zero.
|
||||
Mathematically, % should never overflow, but on x86-like hosts
|
||||
INT_MIN % -1 traps, and the C standard permits this, so treat this
|
||||
as an overflow too. */
|
||||
#define INT_REMAINDER_RANGE_OVERFLOW(a, b, min, max) \
|
||||
INT_DIVIDE_RANGE_OVERFLOW (a, b, min, max)
|
||||
|
||||
/* Return 1 if A << B would overflow in [MIN,MAX] arithmetic.
|
||||
See above for restrictions. Here, MIN and MAX are for A only, and B need
|
||||
not be of the same type as the other arguments. The C standard says that
|
||||
behavior is undefined for shifts unless 0 <= B < wordwidth, and that when
|
||||
A is negative then A << B has undefined behavior and A >> B has
|
||||
implementation-defined behavior, but do not check these other
|
||||
restrictions. */
|
||||
#define INT_LEFT_SHIFT_RANGE_OVERFLOW(a, b, min, max) \
|
||||
((a) < 0 \
|
||||
? (a) < (min) >> (b) \
|
||||
: (max) >> (b) < (a))
|
||||
|
||||
/* True if __builtin_add_overflow (A, B, P) works when P is non-null. */
|
||||
#if 5 <= __GNUC__ && !defined __ICC
|
||||
# define _GL_HAS_BUILTIN_OVERFLOW 1
|
||||
#else
|
||||
# define _GL_HAS_BUILTIN_OVERFLOW 0
|
||||
#endif
|
||||
|
||||
/* True if __builtin_add_overflow_p (A, B, C) works. */
|
||||
#define _GL_HAS_BUILTIN_OVERFLOW_P (7 <= __GNUC__)
|
||||
|
||||
/* The _GL*_OVERFLOW macros have the same restrictions as the
|
||||
*_RANGE_OVERFLOW macros, except that they do not assume that operands
|
||||
(e.g., A and B) have the same type as MIN and MAX. Instead, they assume
|
||||
that the result (e.g., A + B) has that type. */
|
||||
#if _GL_HAS_BUILTIN_OVERFLOW_P
|
||||
# define _GL_ADD_OVERFLOW(a, b, min, max) \
|
||||
__builtin_add_overflow_p (a, b, (__typeof__ ((a) + (b))) 0)
|
||||
# define _GL_SUBTRACT_OVERFLOW(a, b, min, max) \
|
||||
__builtin_sub_overflow_p (a, b, (__typeof__ ((a) - (b))) 0)
|
||||
# define _GL_MULTIPLY_OVERFLOW(a, b, min, max) \
|
||||
__builtin_mul_overflow_p (a, b, (__typeof__ ((a) * (b))) 0)
|
||||
#else
|
||||
# define _GL_ADD_OVERFLOW(a, b, min, max) \
|
||||
((min) < 0 ? INT_ADD_RANGE_OVERFLOW (a, b, min, max) \
|
||||
: (a) < 0 ? (b) <= (a) + (b) \
|
||||
: (b) < 0 ? (a) <= (a) + (b) \
|
||||
: (a) + (b) < (b))
|
||||
# define _GL_SUBTRACT_OVERFLOW(a, b, min, max) \
|
||||
((min) < 0 ? INT_SUBTRACT_RANGE_OVERFLOW (a, b, min, max) \
|
||||
: (a) < 0 ? 1 \
|
||||
: (b) < 0 ? (a) - (b) <= (a) \
|
||||
: (a) < (b))
|
||||
# define _GL_MULTIPLY_OVERFLOW(a, b, min, max) \
|
||||
(((min) == 0 && (((a) < 0 && 0 < (b)) || ((b) < 0 && 0 < (a)))) \
|
||||
|| INT_MULTIPLY_RANGE_OVERFLOW (a, b, min, max))
|
||||
#endif
|
||||
#define _GL_DIVIDE_OVERFLOW(a, b, min, max) \
|
||||
((min) < 0 ? (b) == _GL_INT_NEGATE_CONVERT (min, 1) && (a) < - (max) \
|
||||
: (a) < 0 ? (b) <= (a) + (b) - 1 \
|
||||
: (b) < 0 && (a) + (b) <= (a))
|
||||
#define _GL_REMAINDER_OVERFLOW(a, b, min, max) \
|
||||
((min) < 0 ? (b) == _GL_INT_NEGATE_CONVERT (min, 1) && (a) < - (max) \
|
||||
: (a) < 0 ? (a) % (b) != ((max) - (b) + 1) % (b) \
|
||||
: (b) < 0 && ! _GL_UNSIGNED_NEG_MULTIPLE (a, b, max))
|
||||
|
||||
/* Return a nonzero value if A is a mathematical multiple of B, where
|
||||
A is unsigned, B is negative, and MAX is the maximum value of A's
|
||||
type. A's type must be the same as (A % B)'s type. Normally (A %
|
||||
-B == 0) suffices, but things get tricky if -B would overflow. */
|
||||
#define _GL_UNSIGNED_NEG_MULTIPLE(a, b, max) \
|
||||
(((b) < -_GL_SIGNED_INT_MAXIMUM (b) \
|
||||
? (_GL_SIGNED_INT_MAXIMUM (b) == (max) \
|
||||
? (a) \
|
||||
: (a) % (_GL_INT_CONVERT (a, _GL_SIGNED_INT_MAXIMUM (b)) + 1)) \
|
||||
: (a) % - (b)) \
|
||||
== 0)
|
||||
|
||||
/* Check for integer overflow, and report low order bits of answer.
|
||||
|
||||
The INT_<op>_OVERFLOW macros return 1 if the corresponding C operators
|
||||
might not yield numerically correct answers due to arithmetic overflow.
|
||||
The INT_<op>_WRAPV macros also store the low-order bits of the answer.
|
||||
These macros work correctly on all known practical hosts, and do not rely
|
||||
on undefined behavior due to signed arithmetic overflow.
|
||||
|
||||
Example usage, assuming A and B are long int:
|
||||
|
||||
if (INT_MULTIPLY_OVERFLOW (a, b))
|
||||
printf ("result would overflow\n");
|
||||
else
|
||||
printf ("result is %ld (no overflow)\n", a * b);
|
||||
|
||||
Example usage with WRAPV flavor:
|
||||
|
||||
long int result;
|
||||
bool overflow = INT_MULTIPLY_WRAPV (a, b, &result);
|
||||
printf ("result is %ld (%s)\n", result,
|
||||
overflow ? "after overflow" : "no overflow");
|
||||
|
||||
Restrictions on these macros:
|
||||
|
||||
These macros do not check for all possible numerical problems or
|
||||
undefined or unspecified behavior: they do not check for division
|
||||
by zero, for bad shift counts, or for shifting negative numbers.
|
||||
|
||||
These macros may evaluate their arguments zero or multiple times, so the
|
||||
arguments should not have side effects.
|
||||
|
||||
The WRAPV macros are not constant expressions. They support only
|
||||
+, binary -, and *. The result type must be signed.
|
||||
|
||||
These macros are tuned for their last argument being a constant.
|
||||
|
||||
Return 1 if the integer expressions A * B, A - B, -A, A * B, A / B,
|
||||
A % B, and A << B would overflow, respectively. */
|
||||
|
||||
#define INT_ADD_OVERFLOW(a, b) \
|
||||
_GL_BINARY_OP_OVERFLOW (a, b, _GL_ADD_OVERFLOW)
|
||||
#define INT_SUBTRACT_OVERFLOW(a, b) \
|
||||
_GL_BINARY_OP_OVERFLOW (a, b, _GL_SUBTRACT_OVERFLOW)
|
||||
#if _GL_HAS_BUILTIN_OVERFLOW_P
|
||||
# define INT_NEGATE_OVERFLOW(a) INT_SUBTRACT_OVERFLOW (0, a)
|
||||
#else
|
||||
# define INT_NEGATE_OVERFLOW(a) \
|
||||
INT_NEGATE_RANGE_OVERFLOW (a, _GL_INT_MINIMUM (a), _GL_INT_MAXIMUM (a))
|
||||
#endif
|
||||
#define INT_MULTIPLY_OVERFLOW(a, b) \
|
||||
_GL_BINARY_OP_OVERFLOW (a, b, _GL_MULTIPLY_OVERFLOW)
|
||||
#define INT_DIVIDE_OVERFLOW(a, b) \
|
||||
_GL_BINARY_OP_OVERFLOW (a, b, _GL_DIVIDE_OVERFLOW)
|
||||
#define INT_REMAINDER_OVERFLOW(a, b) \
|
||||
_GL_BINARY_OP_OVERFLOW (a, b, _GL_REMAINDER_OVERFLOW)
|
||||
#define INT_LEFT_SHIFT_OVERFLOW(a, b) \
|
||||
INT_LEFT_SHIFT_RANGE_OVERFLOW (a, b, \
|
||||
_GL_INT_MINIMUM (a), _GL_INT_MAXIMUM (a))
|
||||
|
||||
/* Return 1 if the expression A <op> B would overflow,
|
||||
where OP_RESULT_OVERFLOW (A, B, MIN, MAX) does the actual test,
|
||||
assuming MIN and MAX are the minimum and maximum for the result type.
|
||||
Arguments should be free of side effects. */
|
||||
#define _GL_BINARY_OP_OVERFLOW(a, b, op_result_overflow) \
|
||||
op_result_overflow (a, b, \
|
||||
_GL_INT_MINIMUM (_GL_INT_CONVERT (a, b)), \
|
||||
_GL_INT_MAXIMUM (_GL_INT_CONVERT (a, b)))
|
||||
|
||||
/* Store the low-order bits of A + B, A - B, A * B, respectively, into *R.
|
||||
Return 1 if the result overflows. See above for restrictions. */
|
||||
#define INT_ADD_WRAPV(a, b, r) \
|
||||
_GL_INT_OP_WRAPV (a, b, r, +, __builtin_add_overflow, INT_ADD_OVERFLOW)
|
||||
#define INT_SUBTRACT_WRAPV(a, b, r) \
|
||||
_GL_INT_OP_WRAPV (a, b, r, -, __builtin_sub_overflow, INT_SUBTRACT_OVERFLOW)
|
||||
#define INT_MULTIPLY_WRAPV(a, b, r) \
|
||||
_GL_INT_OP_WRAPV (a, b, r, *, __builtin_mul_overflow, INT_MULTIPLY_OVERFLOW)
|
||||
|
||||
/* Nonzero if this compiler has GCC bug 68193 or Clang bug 25390. See:
|
||||
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=68193
|
||||
https://llvm.org/bugs/show_bug.cgi?id=25390
|
||||
For now, assume all versions of GCC-like compilers generate bogus
|
||||
warnings for _Generic. This matters only for older compilers that
|
||||
lack __builtin_add_overflow. */
|
||||
#if __GNUC__
|
||||
# define _GL__GENERIC_BOGUS 1
|
||||
#else
|
||||
# define _GL__GENERIC_BOGUS 0
|
||||
#endif
|
||||
|
||||
/* Store the low-order bits of A <op> B into *R, where OP specifies
|
||||
the operation. BUILTIN is the builtin operation, and OVERFLOW the
|
||||
overflow predicate. Return 1 if the result overflows. See above
|
||||
for restrictions. */
|
||||
#if _GL_HAS_BUILTIN_OVERFLOW
|
||||
# define _GL_INT_OP_WRAPV(a, b, r, op, builtin, overflow) builtin (a, b, r)
|
||||
#elif 201112 <= __STDC_VERSION__ && !_GL__GENERIC_BOGUS
|
||||
# define _GL_INT_OP_WRAPV(a, b, r, op, builtin, overflow) \
|
||||
(_Generic \
|
||||
(*(r), \
|
||||
signed char: \
|
||||
_GL_INT_OP_CALC (a, b, r, op, overflow, unsigned int, \
|
||||
signed char, SCHAR_MIN, SCHAR_MAX), \
|
||||
short int: \
|
||||
_GL_INT_OP_CALC (a, b, r, op, overflow, unsigned int, \
|
||||
short int, SHRT_MIN, SHRT_MAX), \
|
||||
int: \
|
||||
_GL_INT_OP_CALC (a, b, r, op, overflow, unsigned int, \
|
||||
int, INT_MIN, INT_MAX), \
|
||||
long int: \
|
||||
_GL_INT_OP_CALC (a, b, r, op, overflow, unsigned long int, \
|
||||
long int, LONG_MIN, LONG_MAX), \
|
||||
long long int: \
|
||||
_GL_INT_OP_CALC (a, b, r, op, overflow, unsigned long long int, \
|
||||
long long int, LLONG_MIN, LLONG_MAX)))
|
||||
#else
|
||||
# define _GL_INT_OP_WRAPV(a, b, r, op, builtin, overflow) \
|
||||
(sizeof *(r) == sizeof (signed char) \
|
||||
? _GL_INT_OP_CALC (a, b, r, op, overflow, unsigned int, \
|
||||
signed char, SCHAR_MIN, SCHAR_MAX) \
|
||||
: sizeof *(r) == sizeof (short int) \
|
||||
? _GL_INT_OP_CALC (a, b, r, op, overflow, unsigned int, \
|
||||
short int, SHRT_MIN, SHRT_MAX) \
|
||||
: sizeof *(r) == sizeof (int) \
|
||||
? _GL_INT_OP_CALC (a, b, r, op, overflow, unsigned int, \
|
||||
int, INT_MIN, INT_MAX) \
|
||||
: _GL_INT_OP_WRAPV_LONGISH(a, b, r, op, overflow))
|
||||
# ifdef LLONG_MAX
|
||||
# define _GL_INT_OP_WRAPV_LONGISH(a, b, r, op, overflow) \
|
||||
(sizeof *(r) == sizeof (long int) \
|
||||
? _GL_INT_OP_CALC (a, b, r, op, overflow, unsigned long int, \
|
||||
long int, LONG_MIN, LONG_MAX) \
|
||||
: _GL_INT_OP_CALC (a, b, r, op, overflow, unsigned long long int, \
|
||||
long long int, LLONG_MIN, LLONG_MAX))
|
||||
# else
|
||||
# define _GL_INT_OP_WRAPV_LONGISH(a, b, r, op, overflow) \
|
||||
_GL_INT_OP_CALC (a, b, r, op, overflow, unsigned long int, \
|
||||
long int, LONG_MIN, LONG_MAX)
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* Store the low-order bits of A <op> B into *R, where the operation
|
||||
is given by OP. Use the unsigned type UT for calculation to avoid
|
||||
overflow problems. *R's type is T, with extrema TMIN and TMAX.
|
||||
T must be a signed integer type. Return 1 if the result overflows. */
|
||||
#define _GL_INT_OP_CALC(a, b, r, op, overflow, ut, t, tmin, tmax) \
|
||||
(sizeof ((a) op (b)) < sizeof (t) \
|
||||
? _GL_INT_OP_CALC1 ((t) (a), (t) (b), r, op, overflow, ut, t, tmin, tmax) \
|
||||
: _GL_INT_OP_CALC1 (a, b, r, op, overflow, ut, t, tmin, tmax))
|
||||
#define _GL_INT_OP_CALC1(a, b, r, op, overflow, ut, t, tmin, tmax) \
|
||||
((overflow (a, b) \
|
||||
|| (EXPR_SIGNED ((a) op (b)) && ((a) op (b)) < (tmin)) \
|
||||
|| (tmax) < ((a) op (b))) \
|
||||
? (*(r) = _GL_INT_OP_WRAPV_VIA_UNSIGNED (a, b, op, ut, t), 1) \
|
||||
: (*(r) = _GL_INT_OP_WRAPV_VIA_UNSIGNED (a, b, op, ut, t), 0))
|
||||
|
||||
/* Return the low-order bits of A <op> B, where the operation is given
|
||||
by OP. Use the unsigned type UT for calculation to avoid undefined
|
||||
behavior on signed integer overflow, and convert the result to type T.
|
||||
UT is at least as wide as T and is no narrower than unsigned int,
|
||||
T is two's complement, and there is no padding or trap representations.
|
||||
Assume that converting UT to T yields the low-order bits, as is
|
||||
done in all known two's-complement C compilers. E.g., see:
|
||||
https://gcc.gnu.org/onlinedocs/gcc/Integers-implementation.html
|
||||
|
||||
According to the C standard, converting UT to T yields an
|
||||
implementation-defined result or signal for values outside T's
|
||||
range. However, code that works around this theoretical problem
|
||||
runs afoul of a compiler bug in Oracle Studio 12.3 x86. See:
|
||||
https://lists.gnu.org/r/bug-gnulib/2017-04/msg00049.html
|
||||
As the compiler bug is real, don't try to work around the
|
||||
theoretical problem. */
|
||||
|
||||
#define _GL_INT_OP_WRAPV_VIA_UNSIGNED(a, b, op, ut, t) \
|
||||
((t) ((ut) (a) op (ut) (b)))
|
||||
|
||||
#endif /* _GL_INTPROPS_H */
|
|
@ -0,0 +1,2 @@
|
|||
/* Gnulib <verify.h>, simplified by assuming GCC 4.6 or later. */
|
||||
#define verify(R) _Static_assert (R, "verify (" #R ")")
|
|
@ -0,0 +1,2 @@
|
|||
/* Gnulib mktime-internal.h, tailored for glibc. */
|
||||
typedef time_t mktime_offset_t;
|
541
time/mktime.c
541
time/mktime.c
|
@ -15,13 +15,30 @@
|
|||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with the GNU C Library; if not, see
|
||||
<http://www.gnu.org/licenses/>. */
|
||||
<https://www.gnu.org/licenses/>. */
|
||||
|
||||
/* Define this to have a standalone program to test this implementation of
|
||||
/* Define this to 1 to have a standalone program to test this implementation of
|
||||
mktime. */
|
||||
/* #define DEBUG_MKTIME 1 */
|
||||
#ifndef DEBUG_MKTIME
|
||||
# define DEBUG_MKTIME 0
|
||||
#endif
|
||||
|
||||
#ifndef _LIBC
|
||||
/* The following macros influence what gets defined when this file is compiled:
|
||||
|
||||
Macro/expression Which gnulib module This compilation unit
|
||||
should define
|
||||
|
||||
_LIBC (glibc proper) mktime
|
||||
|
||||
NEED_MKTIME_WORKING mktime rpl_mktime
|
||||
|| NEED_MKTIME_WINDOWS
|
||||
|
||||
NEED_MKTIME_INTERNAL mktime-internal mktime_internal
|
||||
|
||||
DEBUG_MKTIME (defined manually) my_mktime, main
|
||||
*/
|
||||
|
||||
#if !defined _LIBC && !DEBUG_MKTIME
|
||||
# include <config.h>
|
||||
#endif
|
||||
|
||||
|
@ -35,114 +52,128 @@
|
|||
#include <time.h>
|
||||
|
||||
#include <limits.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include <string.h> /* For the real memcpy prototype. */
|
||||
#include <intprops.h>
|
||||
#include <verify.h>
|
||||
|
||||
#if defined DEBUG_MKTIME && DEBUG_MKTIME
|
||||
#if DEBUG_MKTIME
|
||||
# include <stdio.h>
|
||||
# include <stdlib.h>
|
||||
/* Make it work even if the system's libc has its own mktime routine. */
|
||||
# undef mktime
|
||||
# define mktime my_mktime
|
||||
#endif /* DEBUG_MKTIME */
|
||||
|
||||
/* Some of the code in this file assumes that signed integer overflow
|
||||
silently wraps around. This assumption can't easily be programmed
|
||||
around, nor can it be checked for portably at compile-time or
|
||||
easily eliminated at run-time.
|
||||
|
||||
Define WRAPV to 1 if the assumption is valid and if
|
||||
#pragma GCC optimize ("wrapv")
|
||||
does not trigger GCC bug 51793
|
||||
<http://gcc.gnu.org/bugzilla/show_bug.cgi?id=51793>.
|
||||
Otherwise, define it to 0; this forces the use of slower code that,
|
||||
while not guaranteed by the C Standard, works on all production
|
||||
platforms that we know about. */
|
||||
#ifndef WRAPV
|
||||
# if (((__GNUC__ == 4 && 4 <= __GNUC_MINOR__) || 4 < __GNUC__) \
|
||||
&& defined __GLIBC__)
|
||||
# pragma GCC optimize ("wrapv")
|
||||
# define WRAPV 1
|
||||
# else
|
||||
# define WRAPV 0
|
||||
# endif
|
||||
#ifndef NEED_MKTIME_INTERNAL
|
||||
# define NEED_MKTIME_INTERNAL 0
|
||||
#endif
|
||||
#ifndef NEED_MKTIME_WINDOWS
|
||||
# define NEED_MKTIME_WINDOWS 0
|
||||
#endif
|
||||
#ifndef NEED_MKTIME_WORKING
|
||||
# define NEED_MKTIME_WORKING DEBUG_MKTIME
|
||||
#endif
|
||||
|
||||
/* Verify a requirement at compile-time (unlike assert, which is runtime). */
|
||||
#define verify(name, assertion) struct name { char a[(assertion) ? 1 : -1]; }
|
||||
#include "mktime-internal.h"
|
||||
|
||||
/* A signed type that is at least one bit wider than int. */
|
||||
#if INT_MAX <= LONG_MAX / 2
|
||||
#ifndef _LIBC
|
||||
static void
|
||||
my_tzset (void)
|
||||
{
|
||||
# if NEED_MKTIME_WINDOWS
|
||||
/* Rectify the value of the environment variable TZ.
|
||||
There are four possible kinds of such values:
|
||||
- Traditional US time zone names, e.g. "PST8PDT". Syntax: see
|
||||
<https://msdn.microsoft.com/en-us/library/90s5c885.aspx>
|
||||
- Time zone names based on geography, that contain one or more
|
||||
slashes, e.g. "Europe/Moscow".
|
||||
- Time zone names based on geography, without slashes, e.g.
|
||||
"Singapore".
|
||||
- Time zone names that contain explicit DST rules. Syntax: see
|
||||
<http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html#tag_08_03>
|
||||
The Microsoft CRT understands only the first kind. It produces incorrect
|
||||
results if the value of TZ is of the other kinds.
|
||||
But in a Cygwin environment, /etc/profile.d/tzset.sh sets TZ to a value
|
||||
of the second kind for most geographies, or of the first kind in a few
|
||||
other geographies. If it is of the second kind, neutralize it. For the
|
||||
Microsoft CRT, an absent or empty TZ means the time zone that the user
|
||||
has set in the Windows Control Panel.
|
||||
If the value of TZ is of the third or fourth kind -- Cygwin programs
|
||||
understand these syntaxes as well --, it does not matter whether we
|
||||
neutralize it or not, since these values occur only when a Cygwin user
|
||||
has set TZ explicitly; this case is 1. rare and 2. under the user's
|
||||
responsibility. */
|
||||
const char *tz = getenv ("TZ");
|
||||
if (tz != NULL && strchr (tz, '/') != NULL)
|
||||
_putenv ("TZ=");
|
||||
# elif HAVE_TZSET
|
||||
tzset ();
|
||||
# endif
|
||||
}
|
||||
# undef __tzset
|
||||
# define __tzset() my_tzset ()
|
||||
#endif
|
||||
|
||||
#if defined _LIBC || NEED_MKTIME_WORKING || NEED_MKTIME_INTERNAL
|
||||
|
||||
/* A signed type that can represent an integer number of years
|
||||
multiplied by three times the number of seconds in a year. It is
|
||||
needed when converting a tm_year value times the number of seconds
|
||||
in a year. The factor of three comes because these products need
|
||||
to be subtracted from each other, and sometimes with an offset
|
||||
added to them, without worrying about overflow.
|
||||
|
||||
Much of the code uses long_int to represent time_t values, to
|
||||
lessen the hassle of dealing with platforms where time_t is
|
||||
unsigned, and because long_int should suffice to represent all
|
||||
time_t values that mktime can generate even on platforms where
|
||||
time_t is excessively wide. */
|
||||
|
||||
#if INT_MAX <= LONG_MAX / 3 / 366 / 24 / 60 / 60
|
||||
typedef long int long_int;
|
||||
#else
|
||||
typedef long long int long_int;
|
||||
#endif
|
||||
verify (long_int_is_wide_enough, INT_MAX == INT_MAX * (long_int) 2 / 2);
|
||||
verify (INT_MAX <= TYPE_MAXIMUM (long_int) / 3 / 366 / 24 / 60 / 60);
|
||||
|
||||
/* Shift A right by B bits portably, by dividing A by 2**B and
|
||||
truncating towards minus infinity. A and B should be free of side
|
||||
effects, and B should be in the range 0 <= B <= INT_BITS - 2, where
|
||||
INT_BITS is the number of useful bits in an int. GNU code can
|
||||
assume that INT_BITS is at least 32.
|
||||
truncating towards minus infinity. B should be in the range 0 <= B
|
||||
<= LONG_INT_BITS - 2, where LONG_INT_BITS is the number of useful
|
||||
bits in a long_int. LONG_INT_BITS is at least 32.
|
||||
|
||||
ISO C99 says that A >> B is implementation-defined if A < 0. Some
|
||||
implementations (e.g., UNICOS 9.0 on a Cray Y-MP EL) don't shift
|
||||
right in the usual way when A < 0, so SHR falls back on division if
|
||||
ordinary A >> B doesn't seem to be the usual signed shift. */
|
||||
#define SHR(a, b) \
|
||||
((-1 >> 1 == -1 \
|
||||
&& (long_int) -1 >> 1 == -1 \
|
||||
&& ((time_t) -1 >> 1 == -1 || ! TYPE_SIGNED (time_t))) \
|
||||
? (a) >> (b) \
|
||||
: (a) / (1 << (b)) - ((a) % (1 << (b)) < 0))
|
||||
|
||||
/* The extra casts in the following macros work around compiler bugs,
|
||||
e.g., in Cray C 5.0.3.0. */
|
||||
static long_int
|
||||
shr (long_int a, int b)
|
||||
{
|
||||
long_int one = 1;
|
||||
return (-one >> 1 == -1
|
||||
? a >> b
|
||||
: a / (one << b) - (a % (one << b) < 0));
|
||||
}
|
||||
|
||||
/* True if the arithmetic type T is an integer type. bool counts as
|
||||
an integer. */
|
||||
#define TYPE_IS_INTEGER(t) ((t) 1.5 == 1)
|
||||
/* Bounds for the intersection of time_t and long_int. */
|
||||
|
||||
/* True if negative values of the signed integer type T use two's
|
||||
complement, or if T is an unsigned integer type. */
|
||||
#define TYPE_TWOS_COMPLEMENT(t) ((t) ~ (t) 0 == (t) -1)
|
||||
static long_int const mktime_min
|
||||
= ((TYPE_SIGNED (time_t) && TYPE_MINIMUM (time_t) < TYPE_MINIMUM (long_int))
|
||||
? TYPE_MINIMUM (long_int) : TYPE_MINIMUM (time_t));
|
||||
static long_int const mktime_max
|
||||
= (TYPE_MAXIMUM (long_int) < TYPE_MAXIMUM (time_t)
|
||||
? TYPE_MAXIMUM (long_int) : TYPE_MAXIMUM (time_t));
|
||||
|
||||
/* True if the arithmetic type T is signed. */
|
||||
#define TYPE_SIGNED(t) (! ((t) 0 < (t) -1))
|
||||
|
||||
/* The maximum and minimum values for the integer type T. These
|
||||
macros have undefined behavior if T is signed and has padding bits.
|
||||
If this is a problem for you, please let us know how to fix it for
|
||||
your host. */
|
||||
#define TYPE_MINIMUM(t) \
|
||||
((t) (! TYPE_SIGNED (t) \
|
||||
? (t) 0 \
|
||||
: ~ TYPE_MAXIMUM (t)))
|
||||
#define TYPE_MAXIMUM(t) \
|
||||
((t) (! TYPE_SIGNED (t) \
|
||||
? (t) -1 \
|
||||
: ((((t) 1 << (sizeof (t) * CHAR_BIT - 2)) - 1) * 2 + 1)))
|
||||
|
||||
#ifndef TIME_T_MIN
|
||||
# define TIME_T_MIN TYPE_MINIMUM (time_t)
|
||||
#endif
|
||||
#ifndef TIME_T_MAX
|
||||
# define TIME_T_MAX TYPE_MAXIMUM (time_t)
|
||||
#endif
|
||||
#define TIME_T_MIDPOINT (SHR (TIME_T_MIN + TIME_T_MAX, 1) + 1)
|
||||
|
||||
verify (time_t_is_integer, TYPE_IS_INTEGER (time_t));
|
||||
verify (twos_complement_arithmetic,
|
||||
(TYPE_TWOS_COMPLEMENT (int)
|
||||
&& TYPE_TWOS_COMPLEMENT (long_int)
|
||||
&& TYPE_TWOS_COMPLEMENT (time_t)));
|
||||
verify (TYPE_IS_INTEGER (time_t));
|
||||
|
||||
#define EPOCH_YEAR 1970
|
||||
#define TM_YEAR_BASE 1900
|
||||
verify (base_year_is_a_multiple_of_100, TM_YEAR_BASE % 100 == 0);
|
||||
verify (TM_YEAR_BASE % 100 == 0);
|
||||
|
||||
/* Return 1 if YEAR + TM_YEAR_BASE is a leap year. */
|
||||
static int
|
||||
/* Is YEAR + TM_YEAR_BASE a leap year? */
|
||||
static bool
|
||||
leapyear (long_int year)
|
||||
{
|
||||
/* Don't add YEAR to TM_YEAR_BASE, as that might overflow.
|
||||
|
@ -166,20 +197,9 @@ const unsigned short int __mon_yday[2][13] =
|
|||
};
|
||||
|
||||
|
||||
#ifndef _LIBC
|
||||
/* Portable standalone applications should supply a <time.h> that
|
||||
declares a POSIX-compliant localtime_r, for the benefit of older
|
||||
implementations that lack localtime_r or have a nonstandard one.
|
||||
See the gnulib time_r module for one way to implement this. */
|
||||
# undef __localtime_r
|
||||
# define __localtime_r localtime_r
|
||||
# define __mktime_internal mktime_internal
|
||||
# include "mktime-internal.h"
|
||||
#endif
|
||||
|
||||
/* Return 1 if the values A and B differ according to the rules for
|
||||
tm_isdst: A and B differ if one is zero and the other positive. */
|
||||
static int
|
||||
/* Do the values A and B differ according to the rules for tm_isdst?
|
||||
A and B differ if one is zero and the other positive. */
|
||||
static bool
|
||||
isdst_differ (int a, int b)
|
||||
{
|
||||
return (!a != !b) && (0 <= a) && (0 <= b);
|
||||
|
@ -187,107 +207,68 @@ isdst_differ (int a, int b)
|
|||
|
||||
/* Return an integer value measuring (YEAR1-YDAY1 HOUR1:MIN1:SEC1) -
|
||||
(YEAR0-YDAY0 HOUR0:MIN0:SEC0) in seconds, assuming that the clocks
|
||||
were not adjusted between the time stamps.
|
||||
were not adjusted between the timestamps.
|
||||
|
||||
The YEAR values uses the same numbering as TP->tm_year. Values
|
||||
need not be in the usual range. However, YEAR1 must not be less
|
||||
than 2 * INT_MIN or greater than 2 * INT_MAX.
|
||||
need not be in the usual range. However, YEAR1 must not overflow
|
||||
when multiplied by three times the number of seconds in a year, and
|
||||
likewise for YDAY1 and three times the number of seconds in a day. */
|
||||
|
||||
The result may overflow. It is the caller's responsibility to
|
||||
detect overflow. */
|
||||
|
||||
static time_t
|
||||
static long_int
|
||||
ydhms_diff (long_int year1, long_int yday1, int hour1, int min1, int sec1,
|
||||
int year0, int yday0, int hour0, int min0, int sec0)
|
||||
{
|
||||
verify (C99_integer_division, -1 / 2 == 0);
|
||||
verify (-1 / 2 == 0);
|
||||
|
||||
/* Compute intervening leap days correctly even if year is negative.
|
||||
Take care to avoid integer overflow here. */
|
||||
int a4 = SHR (year1, 2) + SHR (TM_YEAR_BASE, 2) - ! (year1 & 3);
|
||||
int b4 = SHR (year0, 2) + SHR (TM_YEAR_BASE, 2) - ! (year0 & 3);
|
||||
int a4 = shr (year1, 2) + shr (TM_YEAR_BASE, 2) - ! (year1 & 3);
|
||||
int b4 = shr (year0, 2) + shr (TM_YEAR_BASE, 2) - ! (year0 & 3);
|
||||
int a100 = a4 / 25 - (a4 % 25 < 0);
|
||||
int b100 = b4 / 25 - (b4 % 25 < 0);
|
||||
int a400 = SHR (a100, 2);
|
||||
int b400 = SHR (b100, 2);
|
||||
int a400 = shr (a100, 2);
|
||||
int b400 = shr (b100, 2);
|
||||
int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
|
||||
|
||||
/* Compute the desired time in time_t precision. Overflow might
|
||||
occur here. */
|
||||
time_t tyear1 = year1;
|
||||
time_t years = tyear1 - year0;
|
||||
time_t days = 365 * years + yday1 - yday0 + intervening_leap_days;
|
||||
time_t hours = 24 * days + hour1 - hour0;
|
||||
time_t minutes = 60 * hours + min1 - min0;
|
||||
time_t seconds = 60 * minutes + sec1 - sec0;
|
||||
/* Compute the desired time without overflowing. */
|
||||
long_int years = year1 - year0;
|
||||
long_int days = 365 * years + yday1 - yday0 + intervening_leap_days;
|
||||
long_int hours = 24 * days + hour1 - hour0;
|
||||
long_int minutes = 60 * hours + min1 - min0;
|
||||
long_int seconds = 60 * minutes + sec1 - sec0;
|
||||
return seconds;
|
||||
}
|
||||
|
||||
/* Return the average of A and B, even if A + B would overflow. */
|
||||
static time_t
|
||||
time_t_avg (time_t a, time_t b)
|
||||
/* Return the average of A and B, even if A + B would overflow.
|
||||
Round toward positive infinity. */
|
||||
static long_int
|
||||
long_int_avg (long_int a, long_int b)
|
||||
{
|
||||
return SHR (a, 1) + SHR (b, 1) + (a & b & 1);
|
||||
}
|
||||
|
||||
/* Return 1 if A + B does not overflow. If time_t is unsigned and if
|
||||
B's top bit is set, assume that the sum represents A - -B, and
|
||||
return 1 if the subtraction does not wrap around. */
|
||||
static int
|
||||
time_t_add_ok (time_t a, time_t b)
|
||||
{
|
||||
if (! TYPE_SIGNED (time_t))
|
||||
{
|
||||
time_t sum = a + b;
|
||||
return (sum < a) == (TIME_T_MIDPOINT <= b);
|
||||
}
|
||||
else if (WRAPV)
|
||||
{
|
||||
time_t sum = a + b;
|
||||
return (sum < a) == (b < 0);
|
||||
}
|
||||
else
|
||||
{
|
||||
time_t avg = time_t_avg (a, b);
|
||||
return TIME_T_MIN / 2 <= avg && avg <= TIME_T_MAX / 2;
|
||||
}
|
||||
}
|
||||
|
||||
/* Return 1 if A + B does not overflow. */
|
||||
static int
|
||||
time_t_int_add_ok (time_t a, int b)
|
||||
{
|
||||
verify (int_no_wider_than_time_t, INT_MAX <= TIME_T_MAX);
|
||||
if (WRAPV)
|
||||
{
|
||||
time_t sum = a + b;
|
||||
return (sum < a) == (b < 0);
|
||||
}
|
||||
else
|
||||
{
|
||||
int a_odd = a & 1;
|
||||
time_t avg = SHR (a, 1) + (SHR (b, 1) + (a_odd & b));
|
||||
return TIME_T_MIN / 2 <= avg && avg <= TIME_T_MAX / 2;
|
||||
}
|
||||
return shr (a, 1) + shr (b, 1) + ((a | b) & 1);
|
||||
}
|
||||
|
||||
/* Return a time_t value corresponding to (YEAR-YDAY HOUR:MIN:SEC),
|
||||
assuming that *T corresponds to *TP and that no clock adjustments
|
||||
assuming that T corresponds to *TP and that no clock adjustments
|
||||
occurred between *TP and the desired time.
|
||||
If TP is null, return a value not equal to *T; this avoids false matches.
|
||||
If overflow occurs, yield the minimal or maximal value, except do not
|
||||
yield a value equal to *T. */
|
||||
static time_t
|
||||
Although T and the returned value are of type long_int,
|
||||
they represent time_t values and must be in time_t range.
|
||||
If TP is null, return a value not equal to T; this avoids false matches.
|
||||
YEAR and YDAY must not be so large that multiplying them by three times the
|
||||
number of seconds in a year (or day, respectively) would overflow long_int.
|
||||
If the returned value would be out of range, yield the minimal or
|
||||
maximal in-range value, except do not yield a value equal to T. */
|
||||
static long_int
|
||||
guess_time_tm (long_int year, long_int yday, int hour, int min, int sec,
|
||||
const time_t *t, const struct tm *tp)
|
||||
long_int t, const struct tm *tp)
|
||||
{
|
||||
if (tp)
|
||||
{
|
||||
time_t d = ydhms_diff (year, yday, hour, min, sec,
|
||||
tp->tm_year, tp->tm_yday,
|
||||
tp->tm_hour, tp->tm_min, tp->tm_sec);
|
||||
if (time_t_add_ok (*t, d))
|
||||
return *t + d;
|
||||
long_int result;
|
||||
long_int d = ydhms_diff (year, yday, hour, min, sec,
|
||||
tp->tm_year, tp->tm_yday,
|
||||
tp->tm_hour, tp->tm_min, tp->tm_sec);
|
||||
if (! INT_ADD_WRAPV (t, d, &result))
|
||||
return result;
|
||||
}
|
||||
|
||||
/* Overflow occurred one way or another. Return the nearest result
|
||||
|
@ -295,32 +276,51 @@ guess_time_tm (long_int year, long_int yday, int hour, int min, int sec,
|
|||
if the actual difference is nonzero, as that would cause a false
|
||||
match; and don't oscillate between two values, as that would
|
||||
confuse the spring-forward gap detector. */
|
||||
return (*t < TIME_T_MIDPOINT
|
||||
? (*t <= TIME_T_MIN + 1 ? *t + 1 : TIME_T_MIN)
|
||||
: (TIME_T_MAX - 1 <= *t ? *t - 1 : TIME_T_MAX));
|
||||
return (t < long_int_avg (mktime_min, mktime_max)
|
||||
? (t <= mktime_min + 1 ? t + 1 : mktime_min)
|
||||
: (mktime_max - 1 <= t ? t - 1 : mktime_max));
|
||||
}
|
||||
|
||||
/* Use CONVERT to convert T to a struct tm value in *TM. T must be in
|
||||
range for time_t. Return TM if successful, NULL if T is out of
|
||||
range for CONVERT. */
|
||||
static struct tm *
|
||||
convert_time (struct tm *(*convert) (const time_t *, struct tm *),
|
||||
long_int t, struct tm *tm)
|
||||
{
|
||||
time_t x = t;
|
||||
return convert (&x, tm);
|
||||
}
|
||||
|
||||
/* Use CONVERT to convert *T to a broken down time in *TP.
|
||||
If *T is out of range for conversion, adjust it so that
|
||||
it is the nearest in-range value and then convert that. */
|
||||
it is the nearest in-range value and then convert that.
|
||||
A value is in range if it fits in both time_t and long_int. */
|
||||
static struct tm *
|
||||
ranged_convert (struct tm *(*convert) (const time_t *, struct tm *),
|
||||
time_t *t, struct tm *tp)
|
||||
long_int *t, struct tm *tp)
|
||||
{
|
||||
struct tm *r = convert (t, tp);
|
||||
struct tm *r;
|
||||
if (*t < mktime_min)
|
||||
*t = mktime_min;
|
||||
else if (mktime_max < *t)
|
||||
*t = mktime_max;
|
||||
r = convert_time (convert, *t, tp);
|
||||
|
||||
if (!r && *t)
|
||||
{
|
||||
time_t bad = *t;
|
||||
time_t ok = 0;
|
||||
long_int bad = *t;
|
||||
long_int ok = 0;
|
||||
|
||||
/* BAD is a known unconvertible time_t, and OK is a known good one.
|
||||
/* BAD is a known unconvertible value, and OK is a known good one.
|
||||
Use binary search to narrow the range between BAD and OK until
|
||||
they differ by 1. */
|
||||
while (bad != ok + (bad < 0 ? -1 : 1))
|
||||
while (true)
|
||||
{
|
||||
time_t mid = *t = time_t_avg (ok, bad);
|
||||
r = convert (t, tp);
|
||||
long_int mid = long_int_avg (ok, bad);
|
||||
if (mid != ok && mid != bad)
|
||||
break;
|
||||
r = convert_time (convert, mid, tp);
|
||||
if (r)
|
||||
ok = mid;
|
||||
else
|
||||
|
@ -331,8 +331,7 @@ ranged_convert (struct tm *(*convert) (const time_t *, struct tm *),
|
|||
{
|
||||
/* The last conversion attempt failed;
|
||||
revert to the most recent successful attempt. */
|
||||
*t = ok;
|
||||
r = convert (t, tp);
|
||||
r = convert_time (convert, ok, tp);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -349,9 +348,9 @@ ranged_convert (struct tm *(*convert) (const time_t *, struct tm *),
|
|||
time_t
|
||||
__mktime_internal (struct tm *tp,
|
||||
struct tm *(*convert) (const time_t *, struct tm *),
|
||||
time_t *offset)
|
||||
mktime_offset_t *offset)
|
||||
{
|
||||
time_t t, gt, t0, t1, t2;
|
||||
long_int t, gt, t0, t1, t2, dt;
|
||||
struct tm tm;
|
||||
|
||||
/* The maximum number of probes (calls to CONVERT) should be enough
|
||||
|
@ -381,9 +380,7 @@ __mktime_internal (struct tm *tp,
|
|||
long_int year = lyear_requested + mon_years;
|
||||
|
||||
/* The other values need not be in range:
|
||||
the remaining code handles minor overflows correctly,
|
||||
assuming int and time_t arithmetic wraps around.
|
||||
Major overflows are caught at the end. */
|
||||
the remaining code handles overflows correctly. */
|
||||
|
||||
/* Calculate day of year from year, month, and day of month.
|
||||
The result need not be in range. */
|
||||
|
@ -393,7 +390,8 @@ __mktime_internal (struct tm *tp,
|
|||
long_int lmday = mday;
|
||||
long_int yday = mon_yday + lmday;
|
||||
|
||||
time_t guessed_offset = *offset;
|
||||
mktime_offset_t off = *offset;
|
||||
int negative_offset_guess;
|
||||
|
||||
int sec_requested = sec;
|
||||
|
||||
|
@ -410,71 +408,14 @@ __mktime_internal (struct tm *tp,
|
|||
/* Invert CONVERT by probing. First assume the same offset as last
|
||||
time. */
|
||||
|
||||
INT_SUBTRACT_WRAPV (0, off, &negative_offset_guess);
|
||||
t0 = ydhms_diff (year, yday, hour, min, sec,
|
||||
EPOCH_YEAR - TM_YEAR_BASE, 0, 0, 0, - guessed_offset);
|
||||
|
||||
if (TIME_T_MAX / INT_MAX / 366 / 24 / 60 / 60 < 3)
|
||||
{
|
||||
/* time_t isn't large enough to rule out overflows, so check
|
||||
for major overflows. A gross check suffices, since if t0
|
||||
has overflowed, it is off by a multiple of TIME_T_MAX -
|
||||
TIME_T_MIN + 1. So ignore any component of the difference
|
||||
that is bounded by a small value. */
|
||||
|
||||
/* Approximate log base 2 of the number of time units per
|
||||
biennium. A biennium is 2 years; use this unit instead of
|
||||
years to avoid integer overflow. For example, 2 average
|
||||
Gregorian years are 2 * 365.2425 * 24 * 60 * 60 seconds,
|
||||
which is 63113904 seconds, and rint (log2 (63113904)) is
|
||||
26. */
|
||||
int ALOG2_SECONDS_PER_BIENNIUM = 26;
|
||||
int ALOG2_MINUTES_PER_BIENNIUM = 20;
|
||||
int ALOG2_HOURS_PER_BIENNIUM = 14;
|
||||
int ALOG2_DAYS_PER_BIENNIUM = 10;
|
||||
int LOG2_YEARS_PER_BIENNIUM = 1;
|
||||
|
||||
int approx_requested_biennia =
|
||||
(SHR (year_requested, LOG2_YEARS_PER_BIENNIUM)
|
||||
- SHR (EPOCH_YEAR - TM_YEAR_BASE, LOG2_YEARS_PER_BIENNIUM)
|
||||
+ SHR (mday, ALOG2_DAYS_PER_BIENNIUM)
|
||||
+ SHR (hour, ALOG2_HOURS_PER_BIENNIUM)
|
||||
+ SHR (min, ALOG2_MINUTES_PER_BIENNIUM)
|
||||
+ (LEAP_SECONDS_POSSIBLE
|
||||
? 0
|
||||
: SHR (sec, ALOG2_SECONDS_PER_BIENNIUM)));
|
||||
|
||||
int approx_biennia = SHR (t0, ALOG2_SECONDS_PER_BIENNIUM);
|
||||
int diff = approx_biennia - approx_requested_biennia;
|
||||
int approx_abs_diff = diff < 0 ? -1 - diff : diff;
|
||||
|
||||
/* IRIX 4.0.5 cc miscalculates TIME_T_MIN / 3: it erroneously
|
||||
gives a positive value of 715827882. Setting a variable
|
||||
first then doing math on it seems to work.
|
||||
(ghazi@caip.rutgers.edu) */
|
||||
time_t time_t_max = TIME_T_MAX;
|
||||
time_t time_t_min = TIME_T_MIN;
|
||||
time_t overflow_threshold =
|
||||
(time_t_max / 3 - time_t_min / 3) >> ALOG2_SECONDS_PER_BIENNIUM;
|
||||
|
||||
if (overflow_threshold < approx_abs_diff)
|
||||
{
|
||||
/* Overflow occurred. Try repairing it; this might work if
|
||||
the time zone offset is enough to undo the overflow. */
|
||||
time_t repaired_t0 = -1 - t0;
|
||||
approx_biennia = SHR (repaired_t0, ALOG2_SECONDS_PER_BIENNIUM);
|
||||
diff = approx_biennia - approx_requested_biennia;
|
||||
approx_abs_diff = diff < 0 ? -1 - diff : diff;
|
||||
if (overflow_threshold < approx_abs_diff)
|
||||
return -1;
|
||||
guessed_offset += repaired_t0 - t0;
|
||||
t0 = repaired_t0;
|
||||
}
|
||||
}
|
||||
EPOCH_YEAR - TM_YEAR_BASE, 0, 0, 0, negative_offset_guess);
|
||||
|
||||
/* Repeatedly use the error to improve the guess. */
|
||||
|
||||
for (t = t1 = t2 = t0, dst2 = 0;
|
||||
(gt = guess_time_tm (year, yday, hour, min, sec, &t,
|
||||
(gt = guess_time_tm (year, yday, hour, min, sec, t,
|
||||
ranged_convert (convert, &t, &tm)),
|
||||
t != gt);
|
||||
t1 = t2, t2 = t, t = gt, dst2 = tm.tm_isdst != 0)
|
||||
|
@ -531,65 +472,70 @@ __mktime_internal (struct tm *tp,
|
|||
|
||||
for (delta = stride; delta < delta_bound; delta += stride)
|
||||
for (direction = -1; direction <= 1; direction += 2)
|
||||
if (time_t_int_add_ok (t, delta * direction))
|
||||
{
|
||||
time_t ot = t + delta * direction;
|
||||
struct tm otm;
|
||||
ranged_convert (convert, &ot, &otm);
|
||||
if (! isdst_differ (isdst, otm.tm_isdst))
|
||||
{
|
||||
/* We found the desired tm_isdst.
|
||||
Extrapolate back to the desired time. */
|
||||
t = guess_time_tm (year, yday, hour, min, sec, &ot, &otm);
|
||||
ranged_convert (convert, &t, &tm);
|
||||
goto offset_found;
|
||||
}
|
||||
}
|
||||
{
|
||||
long_int ot;
|
||||
if (! INT_ADD_WRAPV (t, delta * direction, &ot))
|
||||
{
|
||||
struct tm otm;
|
||||
ranged_convert (convert, &ot, &otm);
|
||||
if (! isdst_differ (isdst, otm.tm_isdst))
|
||||
{
|
||||
/* We found the desired tm_isdst.
|
||||
Extrapolate back to the desired time. */
|
||||
t = guess_time_tm (year, yday, hour, min, sec, ot, &otm);
|
||||
ranged_convert (convert, &t, &tm);
|
||||
goto offset_found;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
offset_found:
|
||||
*offset = guessed_offset + t - t0;
|
||||
/* Set *OFFSET to the low-order bits of T - T0 - NEGATIVE_OFFSET_GUESS.
|
||||
This is just a heuristic to speed up the next mktime call, and
|
||||
correctness is unaffected if integer overflow occurs here. */
|
||||
INT_SUBTRACT_WRAPV (t, t0, &dt);
|
||||
INT_SUBTRACT_WRAPV (dt, negative_offset_guess, offset);
|
||||
|
||||
if (LEAP_SECONDS_POSSIBLE && sec_requested != tm.tm_sec)
|
||||
{
|
||||
/* Adjust time to reflect the tm_sec requested, not the normalized value.
|
||||
Also, repair any damage from a false match due to a leap second. */
|
||||
int sec_adjustment = (sec == 0 && tm.tm_sec == 60) - sec;
|
||||
if (! time_t_int_add_ok (t, sec_requested))
|
||||
long_int sec_adjustment = sec == 0 && tm.tm_sec == 60;
|
||||
sec_adjustment -= sec;
|
||||
sec_adjustment += sec_requested;
|
||||
if (INT_ADD_WRAPV (t, sec_adjustment, &t)
|
||||
|| ! (mktime_min <= t && t <= mktime_max)
|
||||
|| ! convert_time (convert, t, &tm))
|
||||
return -1;
|
||||
t1 = t + sec_requested;
|
||||
if (! time_t_int_add_ok (t1, sec_adjustment))
|
||||
return -1;
|
||||
t2 = t1 + sec_adjustment;
|
||||
if (! convert (&t2, &tm))
|
||||
return -1;
|
||||
t = t2;
|
||||
}
|
||||
|
||||
*tp = tm;
|
||||
return t;
|
||||
}
|
||||
|
||||
#endif /* _LIBC || NEED_MKTIME_WORKING || NEED_MKTIME_INTERNAL */
|
||||
|
||||
/* FIXME: This should use a signed type wide enough to hold any UTC
|
||||
offset in seconds. 'int' should be good enough for GNU code. We
|
||||
can't fix this unilaterally though, as other modules invoke
|
||||
__mktime_internal. */
|
||||
static time_t localtime_offset;
|
||||
#if defined _LIBC || NEED_MKTIME_WORKING || NEED_MKTIME_WINDOWS
|
||||
|
||||
/* Convert *TP to a time_t value. */
|
||||
time_t
|
||||
mktime (struct tm *tp)
|
||||
{
|
||||
#ifdef _LIBC
|
||||
/* POSIX.1 8.1.1 requires that whenever mktime() is called, the
|
||||
time zone names contained in the external variable 'tzname' shall
|
||||
be set as if the tzset() function had been called. */
|
||||
__tzset ();
|
||||
#endif
|
||||
|
||||
# if defined _LIBC || NEED_MKTIME_WORKING
|
||||
static mktime_offset_t localtime_offset;
|
||||
return __mktime_internal (tp, __localtime_r, &localtime_offset);
|
||||
# else
|
||||
# undef mktime
|
||||
return mktime (tp);
|
||||
# endif
|
||||
}
|
||||
#endif /* _LIBC || NEED_MKTIME_WORKING || NEED_MKTIME_WINDOWS */
|
||||
|
||||
#ifdef weak_alias
|
||||
weak_alias (mktime, timelocal)
|
||||
|
@ -600,7 +546,7 @@ libc_hidden_def (mktime)
|
|||
libc_hidden_weak (timelocal)
|
||||
#endif
|
||||
|
||||
#if defined DEBUG_MKTIME && DEBUG_MKTIME
|
||||
#if DEBUG_MKTIME
|
||||
|
||||
static int
|
||||
not_equal_tm (const struct tm *a, const struct tm *b)
|
||||
|
@ -652,6 +598,14 @@ main (int argc, char **argv)
|
|||
time_t tk, tl, tl1;
|
||||
char trailer;
|
||||
|
||||
/* Sanity check, plus call tzset. */
|
||||
tl = 0;
|
||||
if (! localtime (&tl))
|
||||
{
|
||||
printf ("localtime (0) fails\n");
|
||||
status = 1;
|
||||
}
|
||||
|
||||
if ((argc == 3 || argc == 4)
|
||||
&& (sscanf (argv[1], "%d-%d-%d%c",
|
||||
&tm.tm_year, &tm.tm_mon, &tm.tm_mday, &trailer)
|
||||
|
@ -665,12 +619,7 @@ main (int argc, char **argv)
|
|||
tm.tm_isdst = argc == 3 ? -1 : atoi (argv[3]);
|
||||
tmk = tm;
|
||||
tl = mktime (&tmk);
|
||||
lt = localtime (&tl);
|
||||
if (lt)
|
||||
{
|
||||
tml = *lt;
|
||||
lt = &tml;
|
||||
}
|
||||
lt = localtime_r (&tl, &tml);
|
||||
printf ("mktime returns %ld == ", (long int) tl);
|
||||
print_tm (&tmk);
|
||||
printf ("\n");
|
||||
|
@ -685,16 +634,16 @@ main (int argc, char **argv)
|
|||
if (argc == 4)
|
||||
for (tl = from; by < 0 ? to <= tl : tl <= to; tl = tl1)
|
||||
{
|
||||
lt = localtime (&tl);
|
||||
lt = localtime_r (&tl, &tml);
|
||||
if (lt)
|
||||
{
|
||||
tmk = tml = *lt;
|
||||
tmk = tml;
|
||||
tk = mktime (&tmk);
|
||||
status |= check_result (tk, tmk, tl, &tml);
|
||||
}
|
||||
else
|
||||
{
|
||||
printf ("localtime (%ld) yields 0\n", (long int) tl);
|
||||
printf ("localtime_r (%ld) yields 0\n", (long int) tl);
|
||||
status = 1;
|
||||
}
|
||||
tl1 = tl + by;
|
||||
|
@ -705,16 +654,16 @@ main (int argc, char **argv)
|
|||
for (tl = from; by < 0 ? to <= tl : tl <= to; tl = tl1)
|
||||
{
|
||||
/* Null benchmark. */
|
||||
lt = localtime (&tl);
|
||||
lt = localtime_r (&tl, &tml);
|
||||
if (lt)
|
||||
{
|
||||
tmk = tml = *lt;
|
||||
tmk = tml;
|
||||
tk = tl;
|
||||
status |= check_result (tk, tmk, tl, &tml);
|
||||
}
|
||||
else
|
||||
{
|
||||
printf ("localtime (%ld) yields 0\n", (long int) tl);
|
||||
printf ("localtime_r (%ld) yields 0\n", (long int) tl);
|
||||
status = 1;
|
||||
}
|
||||
tl1 = tl + by;
|
||||
|
|
|
@ -17,31 +17,18 @@
|
|||
License along with the GNU C Library; if not, see
|
||||
<http://www.gnu.org/licenses/>. */
|
||||
|
||||
#ifdef HAVE_CONFIG_H
|
||||
#ifndef _LIBC
|
||||
# include <config.h>
|
||||
#endif
|
||||
|
||||
#ifdef _LIBC
|
||||
# include <time.h>
|
||||
#else
|
||||
# include "timegm.h"
|
||||
#include <time.h>
|
||||
|
||||
/* Portable standalone applications should supply a "time_r.h" that
|
||||
declares a POSIX-compliant gmtime_r, for the benefit of older
|
||||
implementations that lack gmtime_r or have a nonstandard one.
|
||||
See the gnulib time_r module for one way to implement this. */
|
||||
# include <time_r.h>
|
||||
# undef __gmtime_r
|
||||
# define __gmtime_r gmtime_r
|
||||
time_t __mktime_internal (struct tm *,
|
||||
struct tm * (*) (time_t const *, struct tm *),
|
||||
time_t *);
|
||||
#endif
|
||||
#include "mktime-internal.h"
|
||||
|
||||
time_t
|
||||
timegm (struct tm *tmp)
|
||||
{
|
||||
static time_t gmtime_offset;
|
||||
static mktime_offset_t gmtime_offset;
|
||||
tmp->tm_isdst = 0;
|
||||
return __mktime_internal (tmp, __gmtime_r, &gmtime_offset);
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue