glibc/sysdeps/nptl/_Fork.c

61 lines
2.3 KiB
C
Raw Normal View History

/* _Fork implementation. Linux version.
Copyright (C) 2021-2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <arch-fork.h>
stdlib: Make abort/_Exit AS-safe (BZ 26275) The recursive lock used on abort does not synchronize with a new process creation (either by fork-like interfaces or posix_spawn ones), nor it is reinitialized after fork(). Also, the SIGABRT unblock before raise() shows another race condition, where a fork or posix_spawn() call by another thread, just after the recursive lock release and before the SIGABRT signal, might create programs with a non-expected signal mask. With the default option (without POSIX_SPAWN_SETSIGDEF), the process can see SIG_DFL for SIGABRT, where it should be SIG_IGN. To fix the AS-safe, raise() does not change the process signal mask, and an AS-safe lock is used if a SIGABRT is installed or the process is blocked or ignored. With the signal mask change removal, there is no need to use a recursive loc. The lock is also taken on both _Fork() and posix_spawn(), to avoid the spawn process to see the abort handler as SIG_DFL. A read-write lock is used to avoid serialize _Fork and posix_spawn execution. Both sigaction (SIGABRT) and abort() requires to lock as writer (since both change the disposition). The fallback is also simplified: there is no need to use a loop of ABORT_INSTRUCTION after _exit() (if the syscall does not terminate the process, the system is broken). The proposed fix changes how setjmp works on a SIGABRT handler, where glibc does not save the signal mask. So usage like the below will now always abort. static volatile int chk_fail_ok; static jmp_buf chk_fail_buf; static void handler (int sig) { if (chk_fail_ok) { chk_fail_ok = 0; longjmp (chk_fail_buf, 1); } else _exit (127); } [...] signal (SIGABRT, handler); [....] chk_fail_ok = 1; if (! setjmp (chk_fail_buf)) { // Something that can calls abort, like a failed fortify function. chk_fail_ok = 0; printf ("FAIL\n"); } Such cases will need to use sigsetjmp instead. The _dl_start_profile calls sigaction through _profil, and to avoid pulling abort() on loader the call is replaced with __libc_sigaction. Checked on x86_64-linux-gnu and aarch64-linux-gnu. Reviewed-by: DJ Delorie <dj@redhat.com>
2024-10-03 18:41:10 +00:00
#include <libc-lock.h>
#include <pthreadP.h>
linux: Add support for getrandom vDSO Linux 6.11 has getrandom() in vDSO. It operates on a thread-local opaque state allocated with mmap using flags specified by the vDSO. Multiple states are allocated at once, as many as fit into a page, and these are held in an array of available states to be doled out to each thread upon first use, and recycled when a thread terminates. As these states run low, more are allocated. To make this procedure async-signal-safe, a simple guard is used in the LSB of the opaque state address, falling back to the syscall if there's reentrancy contention. Also, _Fork() is handled by blocking signals on opaque state allocation (so _Fork() always sees a consistent state even if it interrupts a getrandom() call) and by iterating over the thread stack cache on reclaim_stack. Each opaque state will be in the free states list (grnd_alloc.states) or allocated to a running thread. The cancellation is handled by always using GRND_NONBLOCK flags while calling the vDSO, and falling back to the cancellable syscall if the kernel returns EAGAIN (would block). Since getrandom is not defined by POSIX and cancellation is supported as an extension, the cancellation is handled as 'may occur' instead of 'shall occur' [1], meaning that if vDSO does not block (the expected behavior) getrandom will not act as a cancellation entrypoint. It avoids a pthread_testcancel call on the fast path (different than 'shall occur' functions, like sem_wait()). It is currently enabled for x86_64, which is available in Linux 6.11, and aarch64, powerpc32, powerpc64, loongarch64, and s390x, which are available in Linux 6.12. Link: https://pubs.opengroup.org/onlinepubs/9799919799/nframe.html [1] Co-developed-by: Jason A. Donenfeld <Jason@zx2c4.com> Tested-by: Jason A. Donenfeld <Jason@zx2c4.com> # x86_64 Tested-by: Adhemerval Zanella <adhemerval.zanella@linaro.org> # x86_64, aarch64 Tested-by: Xi Ruoyao <xry111@xry111.site> # x86_64, aarch64, loongarch64 Tested-by: Stefan Liebler <stli@linux.ibm.com> # s390x
2024-09-18 14:01:22 +00:00
#include <getrandom-internal.h>
pid_t
_Fork (void)
{
/* Block all signals to avoid revealing the inconsistent TCB state
stdlib: Make abort/_Exit AS-safe (BZ 26275) The recursive lock used on abort does not synchronize with a new process creation (either by fork-like interfaces or posix_spawn ones), nor it is reinitialized after fork(). Also, the SIGABRT unblock before raise() shows another race condition, where a fork or posix_spawn() call by another thread, just after the recursive lock release and before the SIGABRT signal, might create programs with a non-expected signal mask. With the default option (without POSIX_SPAWN_SETSIGDEF), the process can see SIG_DFL for SIGABRT, where it should be SIG_IGN. To fix the AS-safe, raise() does not change the process signal mask, and an AS-safe lock is used if a SIGABRT is installed or the process is blocked or ignored. With the signal mask change removal, there is no need to use a recursive loc. The lock is also taken on both _Fork() and posix_spawn(), to avoid the spawn process to see the abort handler as SIG_DFL. A read-write lock is used to avoid serialize _Fork and posix_spawn execution. Both sigaction (SIGABRT) and abort() requires to lock as writer (since both change the disposition). The fallback is also simplified: there is no need to use a loop of ABORT_INSTRUCTION after _exit() (if the syscall does not terminate the process, the system is broken). The proposed fix changes how setjmp works on a SIGABRT handler, where glibc does not save the signal mask. So usage like the below will now always abort. static volatile int chk_fail_ok; static jmp_buf chk_fail_buf; static void handler (int sig) { if (chk_fail_ok) { chk_fail_ok = 0; longjmp (chk_fail_buf, 1); } else _exit (127); } [...] signal (SIGABRT, handler); [....] chk_fail_ok = 1; if (! setjmp (chk_fail_buf)) { // Something that can calls abort, like a failed fortify function. chk_fail_ok = 0; printf ("FAIL\n"); } Such cases will need to use sigsetjmp instead. The _dl_start_profile calls sigaction through _profil, and to avoid pulling abort() on loader the call is replaced with __libc_sigaction. Checked on x86_64-linux-gnu and aarch64-linux-gnu. Reviewed-by: DJ Delorie <dj@redhat.com>
2024-10-03 18:41:10 +00:00
to a signal handler after fork. The abort lock should AS-safe
to avoid deadlock if _Fork is called from a signal handler. */
internal_sigset_t original_sigmask;
stdlib: Make abort/_Exit AS-safe (BZ 26275) The recursive lock used on abort does not synchronize with a new process creation (either by fork-like interfaces or posix_spawn ones), nor it is reinitialized after fork(). Also, the SIGABRT unblock before raise() shows another race condition, where a fork or posix_spawn() call by another thread, just after the recursive lock release and before the SIGABRT signal, might create programs with a non-expected signal mask. With the default option (without POSIX_SPAWN_SETSIGDEF), the process can see SIG_DFL for SIGABRT, where it should be SIG_IGN. To fix the AS-safe, raise() does not change the process signal mask, and an AS-safe lock is used if a SIGABRT is installed or the process is blocked or ignored. With the signal mask change removal, there is no need to use a recursive loc. The lock is also taken on both _Fork() and posix_spawn(), to avoid the spawn process to see the abort handler as SIG_DFL. A read-write lock is used to avoid serialize _Fork and posix_spawn execution. Both sigaction (SIGABRT) and abort() requires to lock as writer (since both change the disposition). The fallback is also simplified: there is no need to use a loop of ABORT_INSTRUCTION after _exit() (if the syscall does not terminate the process, the system is broken). The proposed fix changes how setjmp works on a SIGABRT handler, where glibc does not save the signal mask. So usage like the below will now always abort. static volatile int chk_fail_ok; static jmp_buf chk_fail_buf; static void handler (int sig) { if (chk_fail_ok) { chk_fail_ok = 0; longjmp (chk_fail_buf, 1); } else _exit (127); } [...] signal (SIGABRT, handler); [....] chk_fail_ok = 1; if (! setjmp (chk_fail_buf)) { // Something that can calls abort, like a failed fortify function. chk_fail_ok = 0; printf ("FAIL\n"); } Such cases will need to use sigsetjmp instead. The _dl_start_profile calls sigaction through _profil, and to avoid pulling abort() on loader the call is replaced with __libc_sigaction. Checked on x86_64-linux-gnu and aarch64-linux-gnu. Reviewed-by: DJ Delorie <dj@redhat.com>
2024-10-03 18:41:10 +00:00
__abort_lock_rdlock (&original_sigmask);
pid_t pid = arch_fork (&THREAD_SELF->tid);
if (pid == 0)
{
struct pthread *self = THREAD_SELF;
/* Initialize the robust mutex list setting in the kernel which has
been reset during the fork. We do not check for errors because if
it fails here, it must have failed at process startup as well and
nobody could have used robust mutexes.
Before we do that, we have to clear the list of robust mutexes
because we do not inherit ownership of mutexes from the parent.
We do not have to set self->robust_head.futex_offset since we do
inherit the correct value from the parent. We do not need to clear
the pending operation because it must have been zero when fork was
called. */
#if __PTHREAD_MUTEX_HAVE_PREV
self->robust_prev = &self->robust_head;
#endif
self->robust_head.list = &self->robust_head;
INTERNAL_SYSCALL_CALL (set_robust_list, &self->robust_head,
sizeof (struct robust_list_head));
linux: Add support for getrandom vDSO Linux 6.11 has getrandom() in vDSO. It operates on a thread-local opaque state allocated with mmap using flags specified by the vDSO. Multiple states are allocated at once, as many as fit into a page, and these are held in an array of available states to be doled out to each thread upon first use, and recycled when a thread terminates. As these states run low, more are allocated. To make this procedure async-signal-safe, a simple guard is used in the LSB of the opaque state address, falling back to the syscall if there's reentrancy contention. Also, _Fork() is handled by blocking signals on opaque state allocation (so _Fork() always sees a consistent state even if it interrupts a getrandom() call) and by iterating over the thread stack cache on reclaim_stack. Each opaque state will be in the free states list (grnd_alloc.states) or allocated to a running thread. The cancellation is handled by always using GRND_NONBLOCK flags while calling the vDSO, and falling back to the cancellable syscall if the kernel returns EAGAIN (would block). Since getrandom is not defined by POSIX and cancellation is supported as an extension, the cancellation is handled as 'may occur' instead of 'shall occur' [1], meaning that if vDSO does not block (the expected behavior) getrandom will not act as a cancellation entrypoint. It avoids a pthread_testcancel call on the fast path (different than 'shall occur' functions, like sem_wait()). It is currently enabled for x86_64, which is available in Linux 6.11, and aarch64, powerpc32, powerpc64, loongarch64, and s390x, which are available in Linux 6.12. Link: https://pubs.opengroup.org/onlinepubs/9799919799/nframe.html [1] Co-developed-by: Jason A. Donenfeld <Jason@zx2c4.com> Tested-by: Jason A. Donenfeld <Jason@zx2c4.com> # x86_64 Tested-by: Adhemerval Zanella <adhemerval.zanella@linaro.org> # x86_64, aarch64 Tested-by: Xi Ruoyao <xry111@xry111.site> # x86_64, aarch64, loongarch64 Tested-by: Stefan Liebler <stli@linux.ibm.com> # s390x
2024-09-18 14:01:22 +00:00
call_function_static_weak (__getrandom_fork_subprocess);
}
stdlib: Make abort/_Exit AS-safe (BZ 26275) The recursive lock used on abort does not synchronize with a new process creation (either by fork-like interfaces or posix_spawn ones), nor it is reinitialized after fork(). Also, the SIGABRT unblock before raise() shows another race condition, where a fork or posix_spawn() call by another thread, just after the recursive lock release and before the SIGABRT signal, might create programs with a non-expected signal mask. With the default option (without POSIX_SPAWN_SETSIGDEF), the process can see SIG_DFL for SIGABRT, where it should be SIG_IGN. To fix the AS-safe, raise() does not change the process signal mask, and an AS-safe lock is used if a SIGABRT is installed or the process is blocked or ignored. With the signal mask change removal, there is no need to use a recursive loc. The lock is also taken on both _Fork() and posix_spawn(), to avoid the spawn process to see the abort handler as SIG_DFL. A read-write lock is used to avoid serialize _Fork and posix_spawn execution. Both sigaction (SIGABRT) and abort() requires to lock as writer (since both change the disposition). The fallback is also simplified: there is no need to use a loop of ABORT_INSTRUCTION after _exit() (if the syscall does not terminate the process, the system is broken). The proposed fix changes how setjmp works on a SIGABRT handler, where glibc does not save the signal mask. So usage like the below will now always abort. static volatile int chk_fail_ok; static jmp_buf chk_fail_buf; static void handler (int sig) { if (chk_fail_ok) { chk_fail_ok = 0; longjmp (chk_fail_buf, 1); } else _exit (127); } [...] signal (SIGABRT, handler); [....] chk_fail_ok = 1; if (! setjmp (chk_fail_buf)) { // Something that can calls abort, like a failed fortify function. chk_fail_ok = 0; printf ("FAIL\n"); } Such cases will need to use sigsetjmp instead. The _dl_start_profile calls sigaction through _profil, and to avoid pulling abort() on loader the call is replaced with __libc_sigaction. Checked on x86_64-linux-gnu and aarch64-linux-gnu. Reviewed-by: DJ Delorie <dj@redhat.com>
2024-10-03 18:41:10 +00:00
__abort_lock_unlock (&original_sigmask);
return pid;
}
libc_hidden_def (_Fork)