asterinas/framework/jinux-frame/src/arch/x86/boot/multiboot/mod.rs

372 lines
12 KiB
Rust

use alloc::{string::String, vec::Vec};
use multiboot2::MemoryAreaType;
use spin::Once;
use crate::{
arch::x86::kernel::acpi::AcpiMemoryHandler,
boot::{
kcmdline::KCmdlineArg,
memory_region::{non_overlapping_regions_from, MemoryRegion, MemoryRegionType},
BootloaderAcpiArg, BootloaderFramebufferArg,
},
config::PHYS_OFFSET,
vm::paddr_to_vaddr,
};
use core::arch::global_asm;
global_asm!(include_str!("header.S"));
pub(super) const MULTIBOOT_ENTRY_MAGIC: u32 = 0x2BADB002;
fn init_bootloader_name(bootloader_name: &'static Once<String>) {
bootloader_name.call_once(|| {
let mut name = "";
let info = MB1_INFO.get().unwrap();
if info.boot_loader_name != 0 {
// Safety: the bootloader name is C-style zero-terminated string.
unsafe {
let cstr = paddr_to_vaddr(info.boot_loader_name as usize) as *const u8;
let mut len = 0;
while cstr.add(len).read() != 0 {
len += 1;
}
name = core::str::from_utf8(core::slice::from_raw_parts(cstr, len))
.expect("cmdline is not a utf-8 string");
}
}
name.into()
});
}
fn init_kernel_commandline(kernel_cmdline: &'static Once<KCmdlineArg>) {
kernel_cmdline.call_once(|| {
let mut cmdline = "";
let info = MB1_INFO.get().unwrap();
if info.cmdline != 0 {
// Safety: the command line is C-style zero-terminated string.
unsafe {
let cstr = paddr_to_vaddr(info.cmdline as usize) as *const u8;
let mut len = 0;
while cstr.add(len).read() != 0 {
len += 1;
}
cmdline = core::str::from_utf8(core::slice::from_raw_parts(cstr, len))
.expect("cmdline is not a utf-8 string");
}
}
cmdline.into()
});
}
fn init_initramfs(initramfs: &'static Once<&'static [u8]>) {
let info = MB1_INFO.get().unwrap();
// FIXME: We think all modules are initramfs, can this cause problems?
if info.mods_count == 0 {
return;
}
let modules_addr = info.mods_addr as usize;
// We only use one module
let (start, end) = unsafe {
(
(*(paddr_to_vaddr(modules_addr) as *const u32)) as usize,
(*(paddr_to_vaddr(modules_addr + 4) as *const u32)) as usize,
)
};
// We must return a slice composed by VA since kernel should read every in VA.
let base_va = if start < PHYS_OFFSET {
paddr_to_vaddr(start)
} else {
start
};
let length = end - start;
initramfs.call_once(|| unsafe { core::slice::from_raw_parts(base_va as *const u8, length) });
}
fn init_acpi_arg(acpi: &'static Once<BootloaderAcpiArg>) {
// The multiboot protocol does not contain RSDP address.
// TODO: What about UEFI?
let rsdp = unsafe { rsdp::Rsdp::search_for_on_bios(AcpiMemoryHandler {}) };
match rsdp {
Ok(map) => match map.validate() {
Ok(_) => acpi.call_once(|| {
if map.revision() > 0 {
BootloaderAcpiArg::Xsdt(map.xsdt_address() as usize)
} else {
BootloaderAcpiArg::Rsdt(map.rsdt_address() as usize)
}
}),
Err(_) => acpi.call_once(|| BootloaderAcpiArg::NotExists),
},
Err(_) => acpi.call_once(|| BootloaderAcpiArg::NotExists),
};
}
fn init_framebuffer_info(framebuffer_arg: &'static Once<BootloaderFramebufferArg>) {
let info = MB1_INFO.get().unwrap();
framebuffer_arg.call_once(|| BootloaderFramebufferArg {
address: info.framebuffer_table.addr as usize,
width: info.framebuffer_table.width as usize,
height: info.framebuffer_table.height as usize,
bpp: info.framebuffer_table.bpp as usize,
});
}
fn init_memory_regions(memory_regions: &'static Once<Vec<MemoryRegion>>) {
let mut regions = Vec::<MemoryRegion>::new();
// Add the regions in the multiboot protocol.
let info = MB1_INFO.get().unwrap();
let start = info.memory_map_addr as usize;
let length = info.memory_map_len as usize;
let mut current = start;
while current < start + length {
let entry = unsafe { &*(paddr_to_vaddr(current) as *const MemoryEntry) };
let start = entry.base_addr;
let area_type: MemoryRegionType = entry.memory_type.into();
let region = MemoryRegion::new(
start.try_into().unwrap(),
entry.length.try_into().unwrap(),
area_type,
);
regions.push(region);
current += entry.size as usize + 4;
}
// Add the framebuffer region.
let fb = BootloaderFramebufferArg {
address: info.framebuffer_table.addr as usize,
width: info.framebuffer_table.width as usize,
height: info.framebuffer_table.height as usize,
bpp: info.framebuffer_table.bpp as usize,
};
regions.push(MemoryRegion::new(
fb.address,
(fb.width * fb.height * fb.bpp + 7) / 8, // round up when divide with 8 (bits/Byte)
MemoryRegionType::Framebuffer,
));
// Add the kernel region.
// These are physical addresses provided by the linker script.
extern "C" {
fn __kernel_start();
fn __kernel_end();
}
regions.push(MemoryRegion::new(
__kernel_start as usize,
__kernel_end as usize - __kernel_start as usize,
MemoryRegionType::Kernel,
));
// Add the initramfs area.
if info.mods_count != 0 {
let modules_addr = info.mods_addr as usize;
// We only use one module
let (start, end) = unsafe {
(
(*(paddr_to_vaddr(modules_addr) as *const u32)) as usize,
(*(paddr_to_vaddr(modules_addr + 4) as *const u32)) as usize,
)
};
regions.push(MemoryRegion::new(
start,
end - start,
MemoryRegionType::Module,
));
}
// Initialize with non-overlapping regions.
memory_regions.call_once(move || non_overlapping_regions_from(regions.as_ref()));
}
/// Representation of Multiboot Information according to specification.
///
/// Ref:https://www.gnu.org/software/grub/manual/multiboot/multiboot.html#Boot-information-format
///
///```text
/// +-------------------+
/// 0 | flags | (required)
/// +-------------------+
/// 4 | mem_lower | (present if flags[0] is set)
/// 8 | mem_upper | (present if flags[0] is set)
/// +-------------------+
/// 12 | boot_device | (present if flags[1] is set)
/// +-------------------+
/// 16 | cmdline | (present if flags[2] is set)
/// +-------------------+
/// 20 | mods_count | (present if flags[3] is set)
/// 24 | mods_addr | (present if flags[3] is set)
/// +-------------------+
/// 28 - 40 | syms | (present if flags[4] or
/// | | flags[5] is set)
/// +-------------------+
/// 44 | mmap_length | (present if flags[6] is set)
/// 48 | mmap_addr | (present if flags[6] is set)
/// +-------------------+
/// 52 | drives_length | (present if flags[7] is set)
/// 56 | drives_addr | (present if flags[7] is set)
/// +-------------------+
/// 60 | config_table | (present if flags[8] is set)
/// +-------------------+
/// 64 | boot_loader_name | (present if flags[9] is set)
/// +-------------------+
/// 68 | apm_table | (present if flags[10] is set)
/// +-------------------+
/// 72 | vbe_control_info | (present if flags[11] is set)
/// 76 | vbe_mode_info |
/// 80 | vbe_mode |
/// 82 | vbe_interface_seg |
/// 84 | vbe_interface_off |
/// 86 | vbe_interface_len |
/// +-------------------+
/// 88 | framebuffer_addr | (present if flags[12] is set)
/// 96 | framebuffer_pitch |
/// 100 | framebuffer_width |
/// 104 | framebuffer_height|
/// 108 | framebuffer_bpp |
/// 109 | framebuffer_type |
/// 110-115 | color_info |
/// +-------------------+
///```
///
#[derive(Debug, Copy, Clone)]
#[repr(C, packed)]
struct MultibootLegacyInfo {
/// Indicate whether the below field exists.
flags: u32,
/// Physical memory low.
mem_lower: u32,
/// Physical memory high.
mem_upper: u32,
/// Indicates which BIOS disk device the boot loader loaded the OS image from.
boot_device: u32,
/// Command line passed to kernel.
cmdline: u32,
/// Modules count.
mods_count: u32,
/// The start address of modules list, each module structure format:
/// ```text
/// +-------------------+
/// 0 | mod_start |
/// 4 | mod_end |
/// +-------------------+
/// 8 | string |
/// +-------------------+
/// 12 | reserved (0) |
/// +-------------------+
/// ```
mods_addr: u32,
/// If flags[4] = 1, then the field starting at byte 28 are valid:
/// ```text
/// +-------------------+
/// 28 | tabsize |
/// 32 | strsize |
/// 36 | addr |
/// 40 | reserved (0) |
/// +-------------------+
/// ```
/// These indicate where the symbol table from kernel image can be found.
///
/// If flags[5] = 1, then the field starting at byte 28 are valid:
/// ```text
/// +-------------------+
/// 28 | num |
/// 32 | size |
/// 36 | addr |
/// 40 | shndx |
/// +-------------------+
/// ```
/// These indicate where the section header table from an ELF kernel is,
/// the size of each entry, number of entries, and the string table used as the index of names.
symbols: [u8; 16],
memory_map_len: u32,
/// The start address of memory map list, each structure format:
/// ```text
/// +-------------------+
/// -4 | size |
/// +-------------------+
/// 0 | base_addr |
/// 8 | length |
/// 16 | type |
/// +-------------------+
/// ```
memory_map_addr: u32,
drives_length: u32,
drives_addr: u32,
config_table: u32,
boot_loader_name: u32,
apm_table: u32,
vbe_table: VbeTable,
framebuffer_table: FramebufferTable,
}
#[derive(Debug, Copy, Clone)]
#[repr(C, packed)]
struct VbeTable {
control_info: u32,
mode_info: u32,
mode: u16,
interface_seg: u16,
interface_off: u16,
interface_len: u16,
}
#[derive(Debug, Copy, Clone)]
#[repr(C, packed)]
struct FramebufferTable {
addr: u64,
pitch: u32,
width: u32,
height: u32,
bpp: u8,
typ: u8,
color_info: [u8; 6],
}
#[derive(Debug, Copy, Clone)]
#[repr(C, packed)]
struct MemoryEntry {
size: u32,
base_addr: u64,
length: u64,
memory_type: MemoryAreaType,
}
// The entry point of kernel code, which should be defined by the package that
// uses jinux-frame.
extern "Rust" {
fn jinux_main() -> !;
}
static MB1_INFO: Once<&'static MultibootLegacyInfo> = Once::new();
/// The entry point of Rust code called by inline asm.
#[no_mangle]
unsafe extern "sysv64" fn __multiboot_entry(boot_magic: u32, boot_params: u64) -> ! {
assert_eq!(boot_magic, MULTIBOOT_ENTRY_MAGIC);
MB1_INFO.call_once(|| &*(paddr_to_vaddr(boot_params as usize) as *const MultibootLegacyInfo));
crate::boot::register_boot_init_callbacks(
init_bootloader_name,
init_kernel_commandline,
init_initramfs,
init_acpi_arg,
init_framebuffer_info,
init_memory_regions,
);
jinux_main();
}