asterinas/kernel/libs/aster-bigtcp/src/socket/bound.rs

1015 lines
33 KiB
Rust

// SPDX-License-Identifier: MPL-2.0
use alloc::{boxed::Box, collections::btree_map::BTreeMap, sync::Arc, vec::Vec};
use core::{
ops::{Deref, DerefMut},
sync::atomic::{AtomicBool, AtomicU64, AtomicU8, Ordering},
};
use ostd::sync::{LocalIrqDisabled, SpinLock, SpinLockGuard};
use smoltcp::{
iface::Context,
socket::{tcp::State, udp::UdpMetadata, PollAt},
time::{Duration, Instant},
wire::{IpEndpoint, IpRepr, TcpControl, TcpRepr, UdpRepr},
};
use spin::once::Once;
use takeable::Takeable;
use super::{
event::{SocketEventObserver, SocketEvents},
option::{RawTcpOption, RawTcpSetOption},
unbound::{new_tcp_socket, new_udp_socket},
RawTcpSocket, RawUdpSocket, TcpStateCheck,
};
use crate::{
errors::tcp::{ConnectError, ListenError},
ext::Ext,
iface::{BindPortConfig, BoundPort, Iface},
socket_table::{ConnectionKey, ListenerKey},
};
pub struct Socket<T: Inner<E>, E: Ext>(Takeable<Arc<SocketBg<T, E>>>);
/// [`TcpConnectionInner`] or [`UdpSocketInner`].
pub trait Inner<E: Ext> {
type Observer: SocketEventObserver;
/// Called by [`Socket::drop`].
fn on_drop(this: &Arc<SocketBg<Self, E>>)
where
E: Ext,
Self: Sized;
}
pub type TcpConnection<E> = Socket<TcpConnectionInner<E>, E>;
pub type TcpListener<E> = Socket<TcpListenerInner<E>, E>;
pub type UdpSocket<E> = Socket<UdpSocketInner, E>;
/// Common states shared by [`TcpConnectionBg`] and [`UdpSocketBg`].
///
/// In the type name, `Bg` means "background". Its meaning is described below:
/// - A foreground socket (e.g., [`TcpConnection`]) handles system calls from the user program.
/// - A background socket (e.g., [`TcpConnectionBg`]) handles packets from the network.
pub struct SocketBg<T: Inner<E>, E: Ext> {
bound: BoundPort<E>,
inner: T,
observer: Once<T::Observer>,
events: AtomicU8,
next_poll_at_ms: AtomicU64,
}
/// States needed by [`TcpConnectionBg`] but not [`UdpSocketBg`].
pub struct TcpConnectionInner<E: Ext> {
socket: SpinLock<RawTcpSocketExt<E>, LocalIrqDisabled>,
is_dead: AtomicBool,
connection_key: ConnectionKey,
}
struct RawTcpSocketExt<E: Ext> {
socket: Box<RawTcpSocket>,
listener: Option<Arc<TcpListenerBg<E>>>,
has_connected: bool,
}
impl<E: Ext> Deref for RawTcpSocketExt<E> {
type Target = RawTcpSocket;
fn deref(&self) -> &Self::Target {
&self.socket
}
}
impl<E: Ext> DerefMut for RawTcpSocketExt<E> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.socket
}
}
impl<E: Ext> RawTcpSocketExt<E> {
fn on_new_state(&mut self, this: &Arc<TcpConnectionBg<E>>) -> SocketEvents {
if self.may_send() && !self.has_connected {
self.has_connected = true;
if let Some(ref listener) = self.listener {
let mut backlog = listener.inner.backlog.lock();
if let Some(value) = backlog.connecting.remove(this.connection_key()) {
backlog.connected.push(value);
}
listener.add_events(SocketEvents::CAN_RECV);
}
}
self.update_dead(this);
if self.is_peer_closed() {
SocketEvents::PEER_CLOSED
} else if self.is_closed() {
SocketEvents::CLOSED
} else {
SocketEvents::empty()
}
}
/// Updates whether the TCP connection is dead.
///
/// See [`TcpConnectionBg::is_dead`] for the definition of dead TCP connections.
///
/// This method must be called after handling network events. However, it is not necessary to
/// call this method after handling non-closing user events, because the socket can never be
/// dead if it is not closed.
fn update_dead(&self, this: &Arc<TcpConnectionBg<E>>) {
if self.state() == smoltcp::socket::tcp::State::Closed {
this.inner.is_dead.store(true, Ordering::Relaxed);
}
// According to the current smoltcp implementation, a backlog socket will return back to
// the `Listen` state if the connection is RSTed before its establishment.
if self.state() == smoltcp::socket::tcp::State::Listen {
this.inner.is_dead.store(true, Ordering::Relaxed);
if let Some(ref listener) = self.listener {
let mut backlog = listener.inner.backlog.lock();
// This may fail due to race conditions, but it's fine.
let _ = backlog.connecting.remove(&this.inner.connection_key);
}
}
}
}
impl<E: Ext> TcpConnectionInner<E> {
fn new(socket: Box<RawTcpSocket>, listener: Option<Arc<TcpListenerBg<E>>>) -> Self {
let connection_key = {
// Since the socket is connected, the following unwrap can never fail
let local_endpoint = socket.local_endpoint().unwrap();
let remote_endpoint = socket.remote_endpoint().unwrap();
ConnectionKey::from((local_endpoint, remote_endpoint))
};
let socket_ext = RawTcpSocketExt {
socket,
listener,
has_connected: false,
};
TcpConnectionInner {
socket: SpinLock::new(socket_ext),
is_dead: AtomicBool::new(false),
connection_key,
}
}
fn lock(&self) -> SpinLockGuard<RawTcpSocketExt<E>, LocalIrqDisabled> {
self.socket.lock()
}
/// Returns whether the TCP connection is dead.
///
/// See [`TcpConnectionBg::is_dead`] for the definition of dead TCP connections.
fn is_dead(&self) -> bool {
self.is_dead.load(Ordering::Relaxed)
}
/// Sets the TCP connection in [`TimeWait`] state as dead.
///
/// See [`TcpConnectionBg::is_dead`] for the definition of dead TCP connections.
///
/// [`TimeWait`]: smoltcp::socket::tcp::State::TimeWait
fn set_dead_timewait(&self, socket: &RawTcpSocketExt<E>) {
debug_assert!(socket.state() == smoltcp::socket::tcp::State::TimeWait);
self.is_dead.store(true, Ordering::Relaxed);
}
}
impl<E: Ext> Inner<E> for TcpConnectionInner<E> {
type Observer = E::TcpEventObserver;
fn on_drop(this: &Arc<SocketBg<Self, E>>) {
let mut socket = this.inner.lock();
// FIXME: Send RSTs when there is unread data.
socket.close();
// A TCP connection may not be appropriate for immediate removal. We leave the removal
// decision to the polling logic.
this.update_next_poll_at_ms(PollAt::Now);
socket.update_dead(this);
}
}
pub struct TcpBacklog<E: Ext> {
socket: Box<RawTcpSocket>,
max_conn: usize,
connecting: BTreeMap<ConnectionKey, TcpConnection<E>>,
connected: Vec<TcpConnection<E>>,
}
pub struct TcpListenerInner<E: Ext> {
backlog: SpinLock<TcpBacklog<E>, LocalIrqDisabled>,
listener_key: ListenerKey,
}
impl<E: Ext> TcpListenerInner<E> {
fn new(backlog: TcpBacklog<E>, listener_key: ListenerKey) -> Self {
Self {
backlog: SpinLock::new(backlog),
listener_key,
}
}
}
impl<E: Ext> Inner<E> for TcpListenerInner<E> {
type Observer = E::TcpEventObserver;
fn on_drop(this: &Arc<SocketBg<Self, E>>) {
// A TCP listener can be removed immediately.
this.bound.iface().common().remove_tcp_listener(this);
let (connecting, connected) = {
let mut socket = this.inner.backlog.lock();
(
core::mem::take(&mut socket.connecting),
core::mem::take(&mut socket.connected),
)
};
// The lock on `connecting`/`connected` cannot be locked after locking `self`, otherwise we
// might get a deadlock. due to inconsistent lock order problems.
//
// FIXME: Send RSTs instead of going through the normal socket close process.
drop(connecting);
drop(connected);
}
}
/// States needed by [`UdpSocketBg`] but not [`TcpConnectionBg`].
type UdpSocketInner = SpinLock<Box<RawUdpSocket>, LocalIrqDisabled>;
impl<E: Ext> Inner<E> for UdpSocketInner {
type Observer = E::UdpEventObserver;
fn on_drop(this: &Arc<SocketBg<Self, E>>) {
this.inner.lock().close();
// A UDP socket can be removed immediately.
this.bound.iface().common().remove_udp_socket(this);
}
}
impl<T: Inner<E>, E: Ext> Drop for Socket<T, E> {
fn drop(&mut self) {
if self.0.is_usable() {
T::on_drop(&self.0);
}
}
}
pub(crate) type TcpConnectionBg<E> = SocketBg<TcpConnectionInner<E>, E>;
pub(crate) type TcpListenerBg<E> = SocketBg<TcpListenerInner<E>, E>;
pub(crate) type UdpSocketBg<E> = SocketBg<UdpSocketInner, E>;
impl<T: Inner<E>, E: Ext> Socket<T, E> {
pub(crate) fn new(bound: BoundPort<E>, inner: T) -> Self {
Self(Takeable::new(Arc::new(SocketBg {
bound,
inner,
observer: Once::new(),
events: AtomicU8::new(0),
next_poll_at_ms: AtomicU64::new(u64::MAX),
})))
}
pub(crate) fn inner(&self) -> &Arc<SocketBg<T, E>> {
&self.0
}
}
impl<T: Inner<E>, E: Ext> Socket<T, E> {
/// Initializes the observer whose `on_events` will be called when certain iface events happen.
///
/// The caller needs to be responsible for race conditions if network events can occur
/// simultaneously.
///
/// Calling this method on a socket whose observer has already been initialized will have no
/// effect.
pub fn init_observer(&self, new_observer: T::Observer) {
self.0.observer.call_once(|| new_observer);
}
pub fn local_endpoint(&self) -> Option<IpEndpoint> {
self.0.bound.endpoint()
}
pub fn iface(&self) -> &Arc<dyn Iface<E>> {
self.0.bound.iface()
}
}
pub enum ConnectState {
Connecting,
Connected,
Refused,
}
#[derive(Debug, Clone, Copy)]
pub struct NeedIfacePoll(bool);
impl NeedIfacePoll {
pub const TRUE: Self = Self(true);
pub const FALSE: Self = Self(false);
}
impl Deref for NeedIfacePoll {
type Target = bool;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl<E: Ext> TcpConnection<E> {
/// Connects to a remote endpoint.
///
/// Polling the iface is _always_ required after this method succeeds.
pub fn new_connect(
bound: BoundPort<E>,
remote_endpoint: IpEndpoint,
option: &RawTcpOption,
observer: E::TcpEventObserver,
) -> Result<Self, (BoundPort<E>, ConnectError)> {
let Some(local_endpoint) = bound.endpoint() else {
return Err((bound, ConnectError::Unaddressable));
};
let iface = bound.iface().clone();
// We have to lock interface before locking interface
// to avoid dead lock due to inconsistent lock orders.
let mut interface = iface.common().interface();
let mut sockets = iface.common().sockets();
let connection_key = ConnectionKey::from((local_endpoint, remote_endpoint));
if sockets.lookup_connection(&connection_key).is_some() {
return Err((bound, ConnectError::AddressInUse));
}
let socket = {
let mut socket = new_tcp_socket();
option.apply(&mut socket);
if let Err(err) = socket.connect(interface.context(), remote_endpoint, bound.port()) {
return Err((bound, err.into()));
}
socket
};
let inner = TcpConnectionInner::new(socket, None);
let connection = Self::new(bound, inner);
connection.0.update_next_poll_at_ms(PollAt::Now);
connection.init_observer(observer);
let res = sockets.insert_connection(connection.inner().clone());
debug_assert!(res.is_ok());
Ok(connection)
}
/// Returns the state of the connecting procedure.
pub fn connect_state(&self) -> ConnectState {
let socket = self.0.inner.lock();
if socket.state() == State::SynSent || socket.state() == State::SynReceived {
ConnectState::Connecting
} else if socket.has_connected {
ConnectState::Connected
} else if Arc::strong_count(self.0.as_ref()) > 1 {
// Now we should return `ConnectState::Refused`. However, when we do this, we must
// guarantee that `into_bound_port` can succeed (see the method's doc comments). We can
// only guarantee this after we have removed all `Arc<TcpConnectionBg>` in the iface's
// socket set.
//
// This branch serves to avoid a race condition: if the removal process hasn't
// finished, we will return `Connecting` so that the caller won't try to call
// `into_bound_port` (which may fail immediately).
ConnectState::Connecting
} else {
ConnectState::Refused
}
}
/// Converts back to the [`BoundPort`].
///
/// This method will succeed if the connection is fully closed and no network events can reach
/// this connection. We guarantee that this method will always succeed if
/// [`Self::connect_state`] returns [`ConnectState::Refused`].
pub fn into_bound_port(mut self) -> Option<BoundPort<E>> {
let this: TcpConnectionBg<E> = Arc::into_inner(self.0.take())?;
Some(this.bound)
}
/// Sends some data.
///
/// Polling the iface _may_ be required after this method succeeds.
pub fn send<F, R>(&self, f: F) -> Result<(R, NeedIfacePoll), smoltcp::socket::tcp::SendError>
where
F: FnOnce(&mut [u8]) -> (usize, R),
{
let common = self.iface().common();
let mut iface = common.interface();
let mut socket = self.0.inner.lock();
let result = socket.send(f)?;
let need_poll = self
.0
.update_next_poll_at_ms(socket.poll_at(iface.context()));
Ok((result, need_poll))
}
/// Receives some data.
///
/// Polling the iface _may_ be required after this method succeeds.
pub fn recv<F, R>(&self, f: F) -> Result<(R, NeedIfacePoll), smoltcp::socket::tcp::RecvError>
where
F: FnOnce(&mut [u8]) -> (usize, R),
{
let common = self.iface().common();
let mut iface = common.interface();
let mut socket = self.0.inner.lock();
let result = socket.recv(f)?;
let need_poll = self
.0
.update_next_poll_at_ms(socket.poll_at(iface.context()));
Ok((result, need_poll))
}
/// Closes the connection.
///
/// Polling the iface is _always_ required after this method succeeds.
pub fn close(&self) {
let mut socket = self.0.inner.lock();
socket.listener = None;
socket.close();
self.0.update_next_poll_at_ms(PollAt::Now);
}
/// Calls `f` with an immutable reference to the associated [`RawTcpSocket`].
//
// NOTE: If a mutable reference is required, add a method above that correctly updates the next
// polling time.
pub fn raw_with<F, R>(&self, f: F) -> R
where
F: FnOnce(&RawTcpSocket) -> R,
{
let socket = self.0.inner.lock();
f(&socket)
}
}
impl<E: Ext> RawTcpSetOption for TcpConnection<E> {
fn set_keep_alive(&self, interval: Option<Duration>) -> NeedIfacePoll {
let mut socket = self.0.inner.lock();
socket.set_keep_alive(interval);
if interval.is_some() {
self.0.update_next_poll_at_ms(PollAt::Now);
NeedIfacePoll::TRUE
} else {
NeedIfacePoll::FALSE
}
}
fn set_nagle_enabled(&self, enabled: bool) {
let mut socket = self.0.inner.lock();
socket.set_nagle_enabled(enabled);
}
}
impl<E: Ext> TcpListener<E> {
/// Listens at a specified endpoint.
///
/// Polling the iface is _not_ required after this method succeeds.
pub fn new_listen(
bound: BoundPort<E>,
max_conn: usize,
option: &RawTcpOption,
observer: E::TcpEventObserver,
) -> Result<Self, (BoundPort<E>, ListenError)> {
let Some(local_endpoint) = bound.endpoint() else {
return Err((bound, ListenError::Unaddressable));
};
let iface = bound.iface().clone();
let mut sockets = iface.common().sockets();
let listener_key = ListenerKey::new(local_endpoint.addr, local_endpoint.port);
if sockets.lookup_listener(&listener_key).is_some() {
return Err((bound, ListenError::AddressInUse));
}
let socket = {
let mut socket = new_tcp_socket();
option.apply(&mut socket);
if let Err(err) = socket.listen(local_endpoint) {
return Err((bound, err.into()));
}
socket
};
let inner = {
let backlog = TcpBacklog {
socket,
max_conn,
connecting: BTreeMap::new(),
connected: Vec::new(),
};
TcpListenerInner::new(backlog, listener_key)
};
let listener = Self::new(bound, inner);
listener.init_observer(observer);
let res = sockets.insert_listener(listener.inner().clone());
debug_assert!(res.is_ok());
Ok(listener)
}
/// Accepts a TCP connection.
///
/// Polling the iface is _not_ required after this method succeeds.
pub fn accept(&self) -> Option<(TcpConnection<E>, IpEndpoint)> {
let accepted = {
let mut backlog = self.0.inner.backlog.lock();
backlog.connected.pop()?
};
let remote_endpoint = {
// The lock on `accepted` cannot be locked after locking `self`, otherwise we might get
// a deadlock. due to inconsistent lock order problems.
let mut socket = accepted.0.inner.lock();
socket.listener = None;
socket.remote_endpoint()
};
Some((accepted, remote_endpoint.unwrap()))
}
/// Returns whether there is a TCP connection to accept.
///
/// It's the caller's responsibility to deal with race conditions when using this method.
pub fn can_accept(&self) -> bool {
!self.0.inner.backlog.lock().connected.is_empty()
}
}
impl<E: Ext> RawTcpSetOption for TcpListener<E> {
fn set_keep_alive(&self, interval: Option<Duration>) -> NeedIfacePoll {
let mut backlog = self.0.inner.backlog.lock();
backlog.socket.set_keep_alive(interval);
NeedIfacePoll::FALSE
}
fn set_nagle_enabled(&self, enabled: bool) {
let mut backlog = self.0.inner.backlog.lock();
backlog.socket.set_nagle_enabled(enabled);
}
}
impl<E: Ext> UdpSocket<E> {
/// Binds to a specified endpoint.
///
/// Polling the iface is _not_ required after this method succeeds.
pub fn new_bind(
bound: BoundPort<E>,
observer: E::UdpEventObserver,
) -> Result<Self, (BoundPort<E>, smoltcp::socket::udp::BindError)> {
let Some(local_endpoint) = bound.endpoint() else {
return Err((bound, smoltcp::socket::udp::BindError::Unaddressable));
};
let socket = {
let mut socket = new_udp_socket();
if let Err(err) = socket.bind(local_endpoint) {
return Err((bound, err));
}
socket
};
let inner = UdpSocketInner::new(socket);
let socket = Self::new(bound, inner);
socket.init_observer(observer);
socket
.iface()
.common()
.register_udp_socket(socket.inner().clone());
Ok(socket)
}
/// Sends some data.
///
/// Polling the iface is _always_ required after this method succeeds.
pub fn send<F, R>(
&self,
size: usize,
meta: impl Into<UdpMetadata>,
f: F,
) -> Result<R, crate::errors::udp::SendError>
where
F: FnOnce(&mut [u8]) -> R,
{
use smoltcp::socket::udp::SendError as SendErrorInner;
use crate::errors::udp::SendError;
let mut socket = self.0.inner.lock();
if size > socket.packet_send_capacity() {
return Err(SendError::TooLarge);
}
let buffer = match socket.send(size, meta) {
Ok(data) => data,
Err(SendErrorInner::Unaddressable) => return Err(SendError::Unaddressable),
Err(SendErrorInner::BufferFull) => return Err(SendError::BufferFull),
};
let result = f(buffer);
self.0.update_next_poll_at_ms(PollAt::Now);
Ok(result)
}
/// Receives some data.
///
/// Polling the iface is _not_ required after this method succeeds.
pub fn recv<F, R>(&self, f: F) -> Result<R, smoltcp::socket::udp::RecvError>
where
F: FnOnce(&[u8], UdpMetadata) -> R,
{
let mut socket = self.0.inner.lock();
let (data, meta) = socket.recv()?;
let result = f(data, meta);
Ok(result)
}
/// Calls `f` with an immutable reference to the associated [`RawUdpSocket`].
//
// NOTE: If a mutable reference is required, add a method above that correctly updates the next
// polling time.
pub fn raw_with<F, R>(&self, f: F) -> R
where
F: FnOnce(&RawUdpSocket) -> R,
{
let socket = self.0.inner.lock();
f(&socket)
}
}
impl<T: Inner<E>, E: Ext> SocketBg<T, E> {
pub(crate) fn has_events(&self) -> bool {
self.events.load(Ordering::Relaxed) != 0
}
pub(crate) fn on_events(&self) {
// This method can only be called to process network events, so we assume we are holding the
// poll lock and no race conditions can occur.
let events = self.events.load(Ordering::Relaxed);
self.events.store(0, Ordering::Relaxed);
if let Some(observer) = self.observer.get() {
observer.on_events(SocketEvents::from_bits_truncate(events));
}
}
pub(crate) fn on_dead_events(self: Arc<Self>)
where
T::Observer: Clone,
{
// This method can only be called to process network events, so we assume we are holding the
// poll lock and no race conditions can occur.
let events = self.events.load(Ordering::Relaxed);
self.events.store(0, Ordering::Relaxed);
let observer = self.observer.get().cloned();
drop(self);
// Notify dead events after the `Arc` is dropped to ensure the observer sees this event
// with the expected reference count. See `TcpConnection::connect_state` for an example.
if let Some(ref observer) = observer {
observer.on_events(SocketEvents::from_bits_truncate(events));
}
}
fn add_events(&self, new_events: SocketEvents) {
// This method can only be called to add network events, so we assume we are holding the
// poll lock and no race conditions can occur.
let events = self.events.load(Ordering::Relaxed);
self.events
.store(events | new_events.bits(), Ordering::Relaxed);
}
/// Returns the next polling time.
///
/// Note: a zero means polling should be done now and a `u64::MAX` means no polling is required
/// before new network or user events.
pub(crate) fn next_poll_at_ms(&self) -> u64 {
self.next_poll_at_ms.load(Ordering::Relaxed)
}
/// Updates the next polling time according to `poll_at`.
///
/// The update is typically needed after new network or user events have been handled, so this
/// method also marks that there may be new events, so that the event observer provided by
/// [`Socket::init_observer`] can be notified later.
fn update_next_poll_at_ms(&self, poll_at: PollAt) -> NeedIfacePoll {
match poll_at {
PollAt::Now => {
self.next_poll_at_ms.store(0, Ordering::Relaxed);
NeedIfacePoll(true)
}
PollAt::Time(instant) => {
let old_total_millis = self.next_poll_at_ms.load(Ordering::Relaxed);
let new_total_millis = instant.total_millis() as u64;
self.next_poll_at_ms
.store(new_total_millis, Ordering::Relaxed);
NeedIfacePoll(new_total_millis < old_total_millis)
}
PollAt::Ingress => {
self.next_poll_at_ms.store(u64::MAX, Ordering::Relaxed);
NeedIfacePoll(false)
}
}
}
}
impl<E: Ext> TcpConnectionBg<E> {
/// Returns whether the TCP connection is dead.
///
/// A TCP connection is considered dead when and only when the TCP socket is in the closed
/// state, meaning it's no longer accepting packets from the network. This is different from
/// the socket file being closed, which only initiates the socket close process.
pub(crate) fn is_dead(&self) -> bool {
self.inner.is_dead()
}
pub(crate) const fn connection_key(&self) -> &ConnectionKey {
&self.inner.connection_key
}
}
impl<E: Ext> TcpListenerBg<E> {
pub(crate) const fn listener_key(&self) -> &ListenerKey {
&self.inner.listener_key
}
}
impl<T: Inner<E>, E: Ext> SocketBg<T, E> {
/// Returns whether an incoming packet _may_ be processed by the socket.
///
/// The check is intended to be lock-free and fast, but may have false positives.
pub(crate) fn can_process(&self, dst_port: u16) -> bool {
self.bound.port() == dst_port
}
/// Returns whether the socket _may_ generate an outgoing packet.
///
/// The check is intended to be lock-free and fast, but may have false positives.
pub(crate) fn need_dispatch(&self, now: Instant) -> bool {
now.total_millis() as u64 >= self.next_poll_at_ms.load(Ordering::Relaxed)
}
}
#[derive(Debug, PartialEq, Eq, Clone)]
pub(crate) enum TcpProcessResult {
NotProcessed,
Processed,
ProcessedWithReply(IpRepr, TcpRepr<'static>),
}
impl<E: Ext> TcpConnectionBg<E> {
/// Tries to process an incoming packet and returns whether the packet is processed.
pub(crate) fn process(
self: &Arc<Self>,
cx: &mut Context,
ip_repr: &IpRepr,
tcp_repr: &TcpRepr,
) -> TcpProcessResult {
let mut socket = self.inner.lock();
if !socket.accepts(cx, ip_repr, tcp_repr) {
return TcpProcessResult::NotProcessed;
}
// If the socket is in the TimeWait state and a new packet arrives that is a SYN packet
// without ack number, the TimeWait socket will be marked as dead,
// and the packet will be passed on to any other listening sockets for processing.
//
// FIXME: Directly marking the TimeWait socket dead is not the correct approach.
// In Linux, a TimeWait socket remains alive to handle "old duplicate segments".
// If a TimeWait socket receives a new SYN packet, Linux will select a suitable
// listening socket from the socket table to respond to that SYN request.
// (https://elixir.bootlin.com/linux/v6.0.9/source/net/ipv4/tcp_ipv4.c#L2137)
// Moreover, the Initial Sequence Number (ISN) will be set to prevent the TimeWait socket
// from erroneously handling packets from the new connection.
// (https://elixir.bootlin.com/linux/v6.0.9/source/net/ipv4/tcp_minisocks.c#L194)
// Implementing such behavior is challenging with the current smoltcp APIs.
if socket.state() == State::TimeWait
&& tcp_repr.control == TcpControl::Syn
&& tcp_repr.ack_number.is_none()
{
self.inner.set_dead_timewait(&socket);
return TcpProcessResult::NotProcessed;
}
let old_state = socket.state();
// For TCP, receiving an ACK packet can free up space in the queue, allowing more packets
// to be queued.
let mut events = SocketEvents::CAN_RECV | SocketEvents::CAN_SEND;
let result = match socket.process(cx, ip_repr, tcp_repr) {
None => TcpProcessResult::Processed,
Some((ip_repr, tcp_repr)) => TcpProcessResult::ProcessedWithReply(ip_repr, tcp_repr),
};
if socket.state() != old_state {
events |= socket.on_new_state(self);
}
self.add_events(events);
self.update_next_poll_at_ms(socket.poll_at(cx));
result
}
/// Tries to generate an outgoing packet and dispatches the generated packet.
pub(crate) fn dispatch<D>(
this: &Arc<Self>,
cx: &mut Context,
dispatch: D,
) -> Option<(IpRepr, TcpRepr<'static>)>
where
D: FnOnce(&mut Context, &IpRepr, &TcpRepr) -> Option<(IpRepr, TcpRepr<'static>)>,
{
let mut socket = this.inner.lock();
let old_state = socket.state();
let mut events = SocketEvents::empty();
let mut reply = None;
socket
.dispatch(cx, |cx, (ip_repr, tcp_repr)| {
reply = dispatch(cx, &ip_repr, &tcp_repr);
Ok::<(), ()>(())
})
.unwrap();
// `dispatch` can return a packet in response to the generated packet. If the socket
// accepts the packet, we can process it directly.
while let Some((ref ip_repr, ref tcp_repr)) = reply {
if !socket.accepts(cx, ip_repr, tcp_repr) {
break;
}
reply = socket.process(cx, ip_repr, tcp_repr);
events |= SocketEvents::CAN_RECV | SocketEvents::CAN_SEND;
}
if socket.state() != old_state {
events |= socket.on_new_state(this);
}
this.add_events(events);
this.update_next_poll_at_ms(socket.poll_at(cx));
reply
}
}
impl<E: Ext> TcpListenerBg<E> {
/// Tries to process an incoming packet and returns whether the packet is processed.
pub(crate) fn process(
self: &Arc<Self>,
cx: &mut Context,
ip_repr: &IpRepr,
tcp_repr: &TcpRepr,
) -> (TcpProcessResult, Option<Arc<TcpConnectionBg<E>>>) {
let mut backlog = self.inner.backlog.lock();
if !backlog.socket.accepts(cx, ip_repr, tcp_repr) {
return (TcpProcessResult::NotProcessed, None);
}
// FIXME: According to the Linux implementation, `max_conn` is the upper bound of
// `connected.len()`. We currently limit it to `connected.len() + connecting.len()` for
// simplicity.
if backlog.connected.len() + backlog.connecting.len() >= backlog.max_conn {
return (TcpProcessResult::Processed, None);
}
let result = match backlog.socket.process(cx, ip_repr, tcp_repr) {
None => TcpProcessResult::Processed,
Some((ip_repr, tcp_repr)) => TcpProcessResult::ProcessedWithReply(ip_repr, tcp_repr),
};
if backlog.socket.state() == smoltcp::socket::tcp::State::Listen {
return (result, None);
}
let new_socket = {
let mut socket = new_tcp_socket();
RawTcpOption::inherit(&backlog.socket, &mut socket);
socket.listen(backlog.socket.listen_endpoint()).unwrap();
socket
};
let inner = TcpConnectionInner::new(
core::mem::replace(&mut backlog.socket, new_socket),
Some(self.clone()),
);
let conn = TcpConnection::new(
self.bound
.iface()
.bind(BindPortConfig::CanReuse(self.bound.port()))
.unwrap(),
inner,
);
let conn_bg = conn.inner().clone();
let old_conn = backlog.connecting.insert(*conn_bg.connection_key(), conn);
debug_assert!(old_conn.is_none());
conn_bg.update_next_poll_at_ms(PollAt::Now);
(result, Some(conn_bg))
}
}
impl<E: Ext> UdpSocketBg<E> {
/// Tries to process an incoming packet and returns whether the packet is processed.
pub(crate) fn process(
&self,
cx: &mut Context,
ip_repr: &IpRepr,
udp_repr: &UdpRepr,
udp_payload: &[u8],
) -> bool {
let mut socket = self.inner.lock();
if !socket.accepts(cx, ip_repr, udp_repr) {
return false;
}
socket.process(
cx,
smoltcp::phy::PacketMeta::default(),
ip_repr,
udp_repr,
udp_payload,
);
self.add_events(SocketEvents::CAN_RECV);
self.update_next_poll_at_ms(socket.poll_at(cx));
true
}
/// Tries to generate an outgoing packet and dispatches the generated packet.
pub(crate) fn dispatch<D>(&self, cx: &mut Context, dispatch: D)
where
D: FnOnce(&mut Context, &IpRepr, &UdpRepr, &[u8]),
{
let mut socket = self.inner.lock();
socket
.dispatch(cx, |cx, _meta, (ip_repr, udp_repr, udp_payload)| {
dispatch(cx, &ip_repr, &udp_repr, udp_payload);
Ok::<(), ()>(())
})
.unwrap();
// For UDP, dequeuing a packet means that we can queue more packets.
self.add_events(SocketEvents::CAN_SEND);
self.update_next_poll_at_ms(socket.poll_at(cx));
}
}