// SPDX-License-Identifier: MPL-2.0 //! Aster-nix is the Asterinas kernel, a safe, efficient unix-like //! operating system kernel built on top of OSTD and OSDK. #![no_std] #![no_main] #![deny(unsafe_code)] #![feature(btree_cursors)] #![feature(btree_extract_if)] #![feature(debug_closure_helpers)] #![feature(extend_one)] #![feature(extract_if)] #![feature(fn_traits)] #![feature(format_args_nl)] #![feature(int_roundings)] #![feature(integer_sign_cast)] #![feature(let_chains)] #![feature(linked_list_cursors)] #![feature(linked_list_remove)] #![feature(linked_list_retain)] #![feature(negative_impls)] #![feature(panic_can_unwind)] #![feature(register_tool)] #![feature(min_specialization)] #![feature(step_trait)] #![feature(trait_alias)] #![feature(trait_upcasting)] #![feature(associated_type_defaults)] #![register_tool(component_access_control)] use kcmdline::KCmdlineArg; use ostd::{ arch::qemu::{exit_qemu, QemuExitCode}, boot::boot_info, cpu::{CpuId, CpuSet}, }; use process::{spawn_init_process, Process}; use sched::SchedPolicy; use crate::{fs::fs_resolver::FsResolver, prelude::*, thread::kernel_thread::ThreadOptions}; extern crate alloc; extern crate lru; #[macro_use] extern crate controlled; #[macro_use] extern crate getset; #[cfg(target_arch = "x86_64")] #[path = "arch/x86/mod.rs"] mod arch; #[cfg(target_arch = "riscv64")] #[path = "arch/riscv/mod.rs"] mod arch; #[cfg(target_arch = "loongarch64")] #[path = "arch/loongarch/mod.rs"] mod arch; mod context; mod cpu; mod device; mod driver; mod error; mod events; mod fs; mod ipc; mod kcmdline; mod net; mod prelude; mod process; mod sched; mod syscall; mod thread; mod time; mod util; // TODO: Add vDSO support for other architectures. #[cfg(any(target_arch = "x86_64", target_arch = "riscv64"))] mod vdso; mod vm; #[ostd::main] #[controlled] fn main() { ostd::early_println!("[kernel] OSTD initialized. Preparing components."); component::init_all(component::parse_metadata!()).unwrap(); init(); // Spawn all AP idle threads. ostd::boot::smp::register_ap_entry(ap_init); // Spawn the first kernel thread on BSP. let mut affinity = CpuSet::new_empty(); affinity.add(CpuId::bsp()); ThreadOptions::new(first_kthread) .cpu_affinity(affinity) .sched_policy(SchedPolicy::Idle) .spawn(); } fn init() { thread::init(); util::random::init(); driver::init(); time::init(); net::init(); sched::init(); syscall::init(); process::init(); fs::init(); } fn init_in_first_kthread(fs_resolver: &FsResolver) { // Work queue should be initialized before interrupt is enabled, // in case any irq handler uses work queue as bottom half thread::work_queue::init_in_first_kthread(); net::init_in_first_kthread(); fs::init_in_first_kthread(fs_resolver); ipc::init_in_first_kthread(); } fn init_in_first_process(ctx: &Context) { device::init_in_first_process(ctx).unwrap(); fs::init_in_first_process(ctx); process::init_in_first_process(ctx); #[cfg(any(target_arch = "x86_64", target_arch = "riscv64"))] vdso::init_in_first_process(); } fn ap_init() { fn ap_idle_thread() { log::info!( "Kernel idle thread for CPU #{} started.", // No races because `ap_idle_thread` runs on a certain AP. CpuId::current_racy().as_usize(), ); loop { ostd::task::halt_cpu(); } } ThreadOptions::new(ap_idle_thread) // No races because `ap_init` runs on a certain AP. .cpu_affinity(CpuId::current_racy().into()) .sched_policy(SchedPolicy::Idle) .spawn(); } fn first_kthread() { println!("[kernel] Spawn init thread"); // TODO: After introducing the mount namespace, use an initial mount namespace to create // the `FsResolver`, and the initial mount namespace should be passed to the first process. let fs_resolver = FsResolver::new(); init_in_first_kthread(&fs_resolver); print_banner(); let karg: KCmdlineArg = boot_info().kernel_cmdline.as_str().into(); let initproc = spawn_init_process( karg.get_initproc_path().unwrap(), karg.get_initproc_argv().to_vec(), karg.get_initproc_envp().to_vec(), ) .expect("Run init process failed."); // Wait till initproc become zombie. while !initproc.status().is_zombie() { ostd::task::halt_cpu(); } // TODO: exit via qemu isa debug device should not be the only way. let exit_code = if initproc.status().exit_code() == 0 { QemuExitCode::Success } else { QemuExitCode::Failed }; exit_qemu(exit_code); } fn print_banner() { println!("\x1B[36m"); println!( r" _ ___ _____ ___ ___ ___ _ _ _ ___ /_\ / __|_ _| __| _ \_ _| \| | /_\ / __| / _ \\__ \ | | | _|| /| || .` |/ _ \\__ \ /_/ \_\___/ |_| |___|_|_\___|_|\_/_/ \_\___/ " ); println!("\x1B[0m"); }