Include the 100 lines kernel in CI

This commit is contained in:
Jianfeng Jiang 2024-06-20 02:50:23 +00:00 committed by Tate, Hongliang Tian
parent cd2b305fa8
commit 72e726295f
7 changed files with 242 additions and 152 deletions

View File

@ -7,23 +7,7 @@ we will show a new kernel in about 100 lines of safe Rust.
Our new kernel will be able to run the following Hello World program.
```s
.global _start # entry point
.section .text # code section
_start:
mov $1, %rax # syscall number of write
mov $1, %rdi # stdout
mov $message, %rsi # address of message
mov $message_end, %rdx
sub %rsi, %rdx # calculate message len
syscall
mov $60, %rax # syscall number of exit, move it to rax
mov $0, %rdi # exit code, move it to rdi
syscall
.section .rodata # read only data section
message:
.ascii "Hello, world\n"
message_end:
{{#include ../../../osdk/tests/examples_in_book/write_a_kernel_in_100_lines_templates/hello.S}}
```
The assembly program above can be compiled with the following command.
@ -42,131 +26,5 @@ Comments are added
to highlight how the APIs of Asterinas OSTD enable safe kernel development.
```rust
#![no_std]
extern crate alloc;
use align_ext::AlignExt;
use core::str;
use alloc::sync::Arc;
use alloc::vec;
use ostd::cpu::UserContext;
use ostd::prelude::*;
use ostd::task::{Task, TaskOptions};
use ostd::user::{ReturnReason, UserMode, UserSpace};
use ostd::mm::{PageFlags, PAGE_SIZE, Vaddr, FrameAllocOptions, VmIo, VmMapOptions, VmSpace};
/// The kernel's boot and initialization process is managed by Asterinas OSTD.
/// After the process is done, the kernel's execution environment
/// (e.g., stack, heap, tasks) will be ready for use and the entry function
/// labeled as `#[ostd::main]` will be called.
#[ostd::main]
pub fn main() {
let program_binary = include_bytes!("../hello_world");
let user_space = create_user_space(program_binary);
let user_task = create_user_task(Arc::new(user_space));
user_task.run();
}
fn create_user_space(program: &[u8]) -> UserSpace {
let user_pages = {
let nframes = program.len().align_up(PAGE_SIZE) / PAGE_SIZE;
let vm_frames = FrameAllocOptions::new(nframes).alloc().unwrap();
// Phyiscal memory pages can be only accessed
// via the Frame abstraction.
vm_frames.write_bytes(0, program).unwrap();
vm_frames
};
let user_address_space = {
const MAP_ADDR: Vaddr = 0x0040_0000; // The map addr for statically-linked executable
// The page table of the user space can be
// created and manipulated safely through
// the VmSpace abstraction.
let vm_space = VmSpace::new();
let mut options = VmMapOptions::new();
options.addr(Some(MAP_ADDR)).flags(PageFlags::RWX);
vm_space.map(user_pages, &options).unwrap();
vm_space
};
let user_cpu_state = {
const ENTRY_POINT: Vaddr = 0x0040_1000; // The entry point for statically-linked executable
// The user-space CPU states can be initialized
// to arbitrary values via the UserContext
// abstraction.
let mut user_cpu_state = UserContext::default();
user_cpu_state.set_rip(ENTRY_POINT);
user_cpu_state
};
UserSpace::new(user_address_space, user_cpu_state)
}
fn create_user_task(user_space: Arc<UserSpace>) -> Arc<Task> {
fn user_task() {
let current = Task::current();
// Switching between user-kernel space is
// performed via the UserMode abstraction.
let mut user_mode = {
let user_space = current.user_space().unwrap();
UserMode::new(user_space)
};
loop {
// The execute method returns when system
// calls or CPU exceptions occur or some
// events specified by the kernel occur.
let return_reason = user_mode.execute(|| false);
// The CPU registers of the user space
// can be accessed and manipulated via
// the `UserContext` abstraction.
let user_context = user_mode.context_mut();
if ReturnReason::UserSyscall == return_reason {
handle_syscall(user_context, current.user_space().unwrap());
}
}
}
// Kernel tasks are managed by OSTD,
// while scheduling algorithms for them can be
// determined by the users of OSTD.
TaskOptions::new(user_task)
.user_space(Some(user_space))
.data(0)
.build()
.unwrap()
}
fn handle_syscall(user_context: &mut UserContext, user_space: &UserSpace) {
const SYS_WRITE: usize = 1;
const SYS_EXIT: usize = 60;
match user_context.rax() {
SYS_WRITE => {
// Access the user-space CPU registers safely.
let (_, buf_addr, buf_len) =
(user_context.rdi(), user_context.rsi(), user_context.rdx());
let buf = {
let mut buf = vec![0u8; buf_len];
// Copy data from the user space without
// unsafe pointer dereferencing.
user_space
.vm_space()
.read_bytes(buf_addr, &mut buf)
.unwrap();
buf
};
// Use the console for output safely.
println!("{}", str::from_utf8(&buf).unwrap());
// Manipulate the user-space CPU registers safely.
user_context.set_rax(buf_len);
}
SYS_EXIT => Task::current().exit(),
_ => unimplemented!(),
}
}
{{#include ../../../osdk/tests/examples_in_book/write_a_kernel_in_100_lines_templates/lib.rs}}
```

View File

@ -158,7 +158,9 @@ fn install_setup_with_arch(
cmd.arg("--force");
cmd.arg("--root").arg(install_dir.as_ref());
cmd.arg("--git").arg(crate::util::ASTER_GIT_LINK);
cmd.arg("--tag").arg(crate::util::ASTER_GIT_TAG);
// FIXME: Uses a fixed tag instaed of relies on remote branch
cmd.arg("--tag").arg("v0.5.1");
// cmd.arg("--tag").arg(crate::util::ASTER_GIT_TAG);
cmd.arg("--target").arg(match arch {
SetupInstallArch::X86_64 => "x86_64-unknown-none",
SetupInstallArch::Other(path) => path.to_str().unwrap(),

View File

@ -5,3 +5,4 @@
mod create_os_projects;
mod test_and_run_projects;
mod work_in_workspace;
mod write_a_kernel_in_100_lines;

View File

@ -1,7 +1,6 @@
// SPDX-License-Identifier: MPL-2.0
use std::{
env,
fs::{self, OpenOptions},
io::Write,
path::PathBuf,
@ -21,7 +20,6 @@ fn work_in_workspace() {
}
fs::create_dir_all(&workspace_dir).unwrap();
env::set_current_dir(&workspace_dir).unwrap();
let workspace_toml = include_str!("work_in_workspace_templates/Cargo.toml");
fs::write(workspace_dir.join("Cargo.toml"), workspace_toml).unwrap();
@ -29,8 +27,14 @@ fn work_in_workspace() {
// Create a kernel project and a library project
let kernel = "myos";
let module = "mylib";
cargo_osdk(&["new", "--kernel", kernel]).ok().unwrap();
cargo_osdk(&["new", module]).ok().unwrap();
cargo_osdk(&["new", "--kernel", kernel])
.current_dir(&workspace_dir)
.ok()
.unwrap();
cargo_osdk(&["new", module])
.current_dir(&workspace_dir)
.ok()
.unwrap();
// Add a test function to mylib/src/lib.rs
let module_src_path = workspace_dir.join(module).join("src").join("lib.rs");
@ -75,13 +79,22 @@ fn work_in_workspace() {
.unwrap();
// Run subcommand build & run
cargo_osdk(&["build"]).ok().unwrap();
let output = cargo_osdk(&["run"]).output().unwrap();
cargo_osdk(&["build"])
.current_dir(&workspace_dir)
.ok()
.unwrap();
let output = cargo_osdk(&["run"])
.current_dir(&workspace_dir)
.output()
.unwrap();
let stdout = String::from_utf8_lossy(&output.stdout).to_string();
assert!(stdout.contains("The available memory is"));
// Run subcommand test
cargo_osdk(&["test"]).ok().unwrap();
cargo_osdk(&["test"])
.current_dir(&workspace_dir)
.ok()
.unwrap();
// Remove the directory
fs::remove_dir_all(&workspace_dir).unwrap();

View File

@ -0,0 +1,65 @@
// SPDX-License-Identifier: MPL-2.0
use std::{fs, path::PathBuf, process::Command};
use assert_cmd::output::OutputOkExt;
use crate::util::{cargo_osdk, depends_on_local_ostd};
#[test]
fn write_a_kernel_in_100_lines() {
let workdir = "/tmp";
let os_name = "kernel_in_100_lines";
let os_dir = PathBuf::from(workdir).join(os_name);
if os_dir.exists() {
fs::remove_dir_all(&os_dir).unwrap()
}
// Creates a new kernel project
cargo_osdk(&["new", "--kernel", os_name])
.current_dir(&workdir)
.ok()
.unwrap();
// Depends on local OSTD
let manifest_path = os_dir.join("Cargo.toml");
depends_on_local_ostd(manifest_path);
// Copies the kernel content
let kernel_contents = include_str!("write_a_kernel_in_100_lines_templates/lib.rs");
fs::write(os_dir.join("src").join("lib.rs"), kernel_contents).unwrap();
// Copies and compiles the user program
let user_program_contents = include_str!("write_a_kernel_in_100_lines_templates/hello.S");
fs::write(os_dir.join("hello.S"), user_program_contents).unwrap();
Command::new("gcc")
.args(&["-static", "-nostdlib", "hello.S", "-o", "hello"])
.current_dir(&os_dir)
.ok()
.unwrap();
// Adds align ext as the dependency
let file_contents = fs::read_to_string(os_dir.join("Cargo.toml")).unwrap();
let mut manifest: toml::Table = toml::from_str(&file_contents).unwrap();
let dependencies = manifest
.get_mut("dependencies")
.unwrap()
.as_table_mut()
.unwrap();
dependencies.insert(
"align_ext".to_string(),
toml::Value::String("0.1.0".to_string()),
);
let new_file_content = manifest.to_string();
fs::write(os_dir.join("Cargo.toml"), new_file_content).unwrap();
// Runs the kernel
let output = cargo_osdk(&["run"]).current_dir(&os_dir).ok().unwrap();
let stdout = std::str::from_utf8(&output.stdout).unwrap();
println!("stdout = {}", stdout);
fs::remove_dir_all(&os_dir).unwrap();
}

View File

@ -0,0 +1,19 @@
# SPDX-License-Identifier: MPL-2.0
.global _start # entry point
.section .text # code section
_start:
mov $1, %rax # syscall number of write
mov $1, %rdi # stdout
mov $message, %rsi # address of message
mov $message_end, %rdx
sub %rsi, %rdx # calculate message len
syscall
mov $60, %rax # syscall number of exit, move it to rax
mov $0, %rdi # exit code, move it to rdi
syscall
.section .rodata # read only data section
message:
.ascii "Hello, world\n"
message_end:

View File

@ -0,0 +1,132 @@
// SPDX-License-Identifier: MPL-2.0
#![no_std]
extern crate alloc;
use align_ext::AlignExt;
use core::str;
use alloc::sync::Arc;
use alloc::vec;
use ostd::arch::qemu::{exit_qemu, QemuExitCode};
use ostd::cpu::UserContext;
use ostd::mm::{
FrameAllocOptions, PageFlags, Vaddr, VmIo, VmMapOptions, VmSpace, VmWriter, PAGE_SIZE,
};
use ostd::prelude::*;
use ostd::task::{Task, TaskOptions};
use ostd::user::{ReturnReason, UserMode, UserSpace};
/// The kernel's boot and initialization process is managed by OSTD.
/// After the process is done, the kernel's execution environment
/// (e.g., stack, heap, tasks) will be ready for use and the entry function
/// labeled as `#[ostd::main]` will be called.
#[ostd::main]
pub fn main() {
let program_binary = include_bytes!("../hello");
let user_space = create_user_space(program_binary);
let user_task = create_user_task(Arc::new(user_space));
user_task.run();
}
fn create_user_space(program: &[u8]) -> UserSpace {
let user_pages = {
let nframes = program.len().align_up(PAGE_SIZE) / PAGE_SIZE;
let vm_frames = FrameAllocOptions::new(nframes).alloc().unwrap();
// Phyiscal memory pages can be only accessed
// via the Frame abstraction.
vm_frames.write_bytes(0, program).unwrap();
vm_frames
};
let user_address_space = {
const MAP_ADDR: Vaddr = 0x0040_0000; // The map addr for statically-linked executable
// The page table of the user space can be
// created and manipulated safely through
// the VmSpace abstraction.
let vm_space = VmSpace::new();
let mut options = VmMapOptions::new();
options.addr(Some(MAP_ADDR)).flags(PageFlags::RWX);
vm_space.map(user_pages, &options).unwrap();
Arc::new(vm_space)
};
let user_cpu_state = {
const ENTRY_POINT: Vaddr = 0x0040_1000; // The entry point for statically-linked executable
// The user-space CPU states can be initialized
// to arbitrary values via the UserContext
// abstraction.
let mut user_cpu_state = UserContext::default();
user_cpu_state.set_rip(ENTRY_POINT);
user_cpu_state
};
UserSpace::new(user_address_space, user_cpu_state)
}
fn create_user_task(user_space: Arc<UserSpace>) -> Arc<Task> {
fn user_task() {
let current = Task::current();
// Switching between user-kernel space is
// performed via the UserMode abstraction.
let mut user_mode = {
let user_space = current.user_space().unwrap();
UserMode::new(user_space)
};
loop {
// The execute method returns when system
// calls or CPU exceptions occur or some
// events specified by the kernel occur.
let return_reason = user_mode.execute(|| false);
// The CPU registers of the user space
// can be accessed and manipulated via
// the `UserContext` abstraction.
let user_context = user_mode.context_mut();
if ReturnReason::UserSyscall == return_reason {
handle_syscall(user_context, current.user_space().unwrap());
}
}
}
// Kernel tasks are managed by the Framework,
// while scheduling algorithms for them can be
// determined by the users of the Framework.
TaskOptions::new(user_task)
.user_space(Some(user_space))
.data(0)
.build()
.unwrap()
}
fn handle_syscall(user_context: &mut UserContext, user_space: &UserSpace) {
const SYS_WRITE: usize = 1;
const SYS_EXIT: usize = 60;
match user_context.rax() {
SYS_WRITE => {
// Access the user-space CPU registers safely.
let (_, buf_addr, buf_len) =
(user_context.rdi(), user_context.rsi(), user_context.rdx());
let buf = {
let mut buf = vec![0u8; buf_len];
// Copy data from the user space without
// unsafe pointer dereferencing.
let current_vm_space = user_space.vm_space();
let mut reader = current_vm_space.reader(buf_addr, buf_len).unwrap();
reader
.read_fallible(&mut VmWriter::from(&mut buf as &mut [u8]))
.unwrap();
buf
};
// Use the console for output safely.
println!("{}", str::from_utf8(&buf).unwrap());
// Manipulate the user-space CPU registers safely.
user_context.set_rax(buf_len);
}
SYS_EXIT => exit_qemu(QemuExitCode::Success),
_ => unimplemented!(),
}
}