asterinas/kernel/aster-nix/src/process/program_loader/elf/load_elf.rs

345 lines
11 KiB
Rust
Raw Normal View History

2024-01-03 03:22:36 +00:00
// SPDX-License-Identifier: MPL-2.0
//! This module is used to parse elf file content to get elf_load_info.
//! When create a process from elf file, we will use the elf_load_info to construct the VmSpace
2023-03-26 05:34:42 +00:00
use align_ext::AlignExt;
use aster_frame::{
task::Task,
vm::{VmIo, VmPerm},
};
2023-12-25 03:12:25 +00:00
use aster_rights::{Full, Rights};
use xmas_elf::program::{self, ProgramHeader64};
use super::elf_file::Elf;
use crate::{
fs::{
fs_resolver::{FsPath, FsResolver, AT_FDCWD},
utils::Dentry,
},
prelude::*,
process::{
do_exit_group,
process_vm::ProcessVm,
program_loader::elf::init_stack::{init_aux_vec, InitStack},
TermStatus,
},
vm::{
perms::VmPerms,
vmar::Vmar,
vmo::{Vmo, VmoOptions, VmoRightsOp},
},
};
2023-03-07 09:13:35 +00:00
/// load elf to the root vmar. this function will
/// 1. read the vaddr of each segment to get all elf pages.
2023-07-17 06:36:27 +00:00
/// 2. create a vmo for each elf segment, create a pager for each segment. Then map the vmo to the root vmar.
2023-03-07 09:13:35 +00:00
/// 3. write proper content to the init stack.
pub fn load_elf_to_vm(
process_vm: &ProcessVm,
2023-03-07 09:13:35 +00:00
file_header: &[u8],
2023-03-31 05:52:00 +00:00
elf_file: Arc<Dentry>,
2023-03-29 03:35:02 +00:00
fs_resolver: &FsResolver,
2023-03-07 09:13:35 +00:00
argv: Vec<CString>,
envp: Vec<CString>,
2023-12-06 07:03:52 +00:00
vdso_text_base: Vaddr,
2023-03-07 09:13:35 +00:00
) -> Result<ElfLoadInfo> {
let elf = Elf::parse_elf(file_header)?;
let ldso = if elf.is_shared_object() {
Some(lookup_and_parse_ldso(&elf, file_header, fs_resolver)?)
2023-03-29 03:35:02 +00:00
} else {
None
};
2023-12-06 07:03:52 +00:00
match init_and_map_vmos(
process_vm,
ldso,
&elf,
&elf_file,
argv,
envp,
vdso_text_base,
) {
2023-09-04 03:04:42 +00:00
Ok(elf_load_info) => Ok(elf_load_info),
Err(e) => {
// Since the process_vm is cleared, the process cannot return to user space again,
// so exit_group is called here.
// FIXME: if `current` macro is used when creating the init process,
// the macro will panic. This corner case should be handled later.
// FIXME: how to set the correct exit status?
do_exit_group(TermStatus::Exited(1));
Task::current().exit();
}
}
}
fn lookup_and_parse_ldso(
2023-03-29 03:35:02 +00:00
elf: &Elf,
file_header: &[u8],
fs_resolver: &FsResolver,
) -> Result<(Arc<Dentry>, Elf)> {
2023-04-04 03:32:52 +00:00
let ldso_file = {
let ldso_path = elf.ldso_path(file_header)?;
let fs_path = FsPath::new(AT_FDCWD, &ldso_path)?;
fs_resolver.lookup(&fs_path)?
};
let ldso_elf = {
let mut buf = Box::new([0u8; PAGE_SIZE]);
let inode = ldso_file.inode();
inode.read_at(0, &mut *buf)?;
2023-04-04 03:32:52 +00:00
Elf::parse_elf(&*buf)?
};
Ok((ldso_file, ldso_elf))
}
fn load_ldso(root_vmar: &Vmar<Full>, ldso_file: &Dentry, ldso_elf: &Elf) -> Result<LdsoLoadInfo> {
2023-09-04 03:04:42 +00:00
let map_addr = map_segment_vmos(ldso_elf, root_vmar, ldso_file)?;
2023-04-04 03:32:52 +00:00
Ok(LdsoLoadInfo::new(
ldso_elf.entry_point() + map_addr,
map_addr,
))
2023-03-29 03:35:02 +00:00
}
fn init_and_map_vmos(
process_vm: &ProcessVm,
ldso: Option<(Arc<Dentry>, Elf)>,
elf: &Elf,
elf_file: &Dentry,
argv: Vec<CString>,
envp: Vec<CString>,
2023-12-06 07:03:52 +00:00
vdso_text_base: Vaddr,
) -> Result<ElfLoadInfo> {
let root_vmar = process_vm.root_vmar();
// After we clear process vm, if any error happens, we must call exit_group instead of return to user space.
let ldso_load_info = if let Some((ldso_file, ldso_elf)) = ldso {
Some(load_ldso(root_vmar, &ldso_file, &ldso_elf)?)
} else {
None
};
2023-09-04 03:04:42 +00:00
let map_addr = map_segment_vmos(elf, root_vmar, elf_file)?;
2023-12-06 07:03:52 +00:00
let mut aux_vec = init_aux_vec(elf, map_addr, vdso_text_base)?;
let mut init_stack = InitStack::new_default_config(argv, envp);
2023-09-04 03:04:42 +00:00
init_stack.init(root_vmar, elf, &ldso_load_info, &mut aux_vec)?;
let entry_point = if let Some(ldso_load_info) = ldso_load_info {
// Normal shared object
ldso_load_info.entry_point()
2023-09-04 03:04:42 +00:00
} else if elf.is_shared_object() {
// ldso itself
elf.entry_point() + map_addr
} else {
2023-09-04 03:04:42 +00:00
// statically linked executable
elf.entry_point()
};
let elf_load_info = ElfLoadInfo::new(entry_point, init_stack.user_stack_top());
Ok(elf_load_info)
}
2023-03-29 03:35:02 +00:00
pub struct LdsoLoadInfo {
entry_point: Vaddr,
base_addr: Vaddr,
}
impl LdsoLoadInfo {
pub fn new(entry_point: Vaddr, base_addr: Vaddr) -> Self {
Self {
entry_point,
base_addr,
}
}
pub fn entry_point(&self) -> Vaddr {
self.entry_point
}
pub fn base_addr(&self) -> Vaddr {
self.base_addr
}
}
2023-03-07 09:13:35 +00:00
pub struct ElfLoadInfo {
entry_point: Vaddr,
user_stack_top: Vaddr,
}
impl ElfLoadInfo {
2023-03-07 09:13:35 +00:00
pub fn new(entry_point: Vaddr, user_stack_top: Vaddr) -> Self {
Self {
2023-03-07 09:13:35 +00:00
entry_point,
user_stack_top,
}
}
2023-03-07 09:13:35 +00:00
pub fn entry_point(&self) -> Vaddr {
self.entry_point
}
2023-03-07 09:13:35 +00:00
pub fn user_stack_top(&self) -> Vaddr {
self.user_stack_top
}
2023-03-07 09:13:35 +00:00
}
2023-03-07 09:13:35 +00:00
/// init vmo for each segment and then map segment to root vmar
pub fn map_segment_vmos(elf: &Elf, root_vmar: &Vmar<Full>, elf_file: &Dentry) -> Result<Vaddr> {
2023-03-29 03:35:02 +00:00
// all segments of the shared object must be mapped to a continuous vm range
// to ensure the relative offset of each segment not changed.
let base_addr = if elf.is_shared_object() {
base_map_addr(elf, root_vmar)?
2023-03-29 03:35:02 +00:00
} else {
0
2023-03-29 03:35:02 +00:00
};
2023-03-07 09:13:35 +00:00
for program_header in &elf.program_headers {
let type_ = program_header
.get_type()
2023-03-23 07:43:48 +00:00
.map_err(|_| Error::with_message(Errno::ENOEXEC, "parse program header type fails"))?;
2023-03-07 09:13:35 +00:00
if type_ == program::Type::Load {
2023-04-04 07:13:32 +00:00
check_segment_align(program_header)?;
2023-03-31 05:52:00 +00:00
let vmo = init_segment_vmo(program_header, elf_file)?;
map_segment_vmo(program_header, vmo, root_vmar, base_addr)?;
}
}
Ok(base_addr)
2023-03-07 09:13:35 +00:00
}
fn base_map_addr(elf: &Elf, root_vmar: &Vmar<Full>) -> Result<Vaddr> {
2023-04-04 03:32:52 +00:00
let elf_size = elf
.program_headers
.iter()
.filter_map(|program_header| {
2023-12-02 09:23:08 +00:00
if let Ok(type_) = program_header.get_type()
&& type_ == program::Type::Load
{
let ph_max_addr = program_header.virtual_addr + program_header.mem_size;
Some(ph_max_addr as usize)
} else {
None
}
2023-04-04 03:32:52 +00:00
})
.max()
.ok_or(Error::with_message(
Errno::ENOEXEC,
"executable file does not has loadable sections",
))?;
let map_size = elf_size.align_up(PAGE_SIZE);
let vmo = VmoOptions::<Rights>::new(0).alloc()?;
let vmar_map_options = root_vmar.new_map(vmo, VmPerms::empty())?.size(map_size);
vmar_map_options.build()
2023-03-29 03:35:02 +00:00
}
2023-03-07 09:13:35 +00:00
/// map the segment vmo to root_vmar
fn map_segment_vmo(
program_header: &ProgramHeader64,
vmo: Vmo,
root_vmar: &Vmar<Full>,
base_addr: Vaddr,
2023-03-07 09:13:35 +00:00
) -> Result<()> {
let perms = VmPerms::from(parse_segment_perm(program_header.flags));
2023-03-07 09:13:35 +00:00
let offset = (program_header.virtual_addr as Vaddr).align_down(PAGE_SIZE);
2023-03-29 03:35:02 +00:00
trace!(
"map segment vmo: virtual addr = 0x{:x}, size = 0x{:x}, perms = {:?}",
2023-03-31 05:52:00 +00:00
offset,
program_header.mem_size,
2023-03-29 03:35:02 +00:00
perms
2023-03-23 07:43:48 +00:00
);
let mut vm_map_options = root_vmar.new_map(vmo, perms)?.can_overwrite(true);
let offset = base_addr + offset;
vm_map_options = vm_map_options.offset(offset);
2023-03-07 09:13:35 +00:00
let map_addr = vm_map_options.build()?;
Ok(())
}
2023-03-07 09:13:35 +00:00
/// create vmo for each segment
2023-03-31 05:52:00 +00:00
fn init_segment_vmo(program_header: &ProgramHeader64, elf_file: &Dentry) -> Result<Vmo> {
trace!(
"mem range = 0x{:x} - 0x{:x}, mem_size = 0x{:x}",
program_header.virtual_addr,
program_header.virtual_addr + program_header.mem_size,
program_header.mem_size
);
trace!(
"file range = 0x{:x} - 0x{:x}, file_size = 0x{:x}",
program_header.offset,
program_header.offset + program_header.file_size,
program_header.file_size
);
2023-04-04 03:32:52 +00:00
2023-03-31 05:52:00 +00:00
let file_offset = program_header.offset as usize;
let virtual_addr = program_header.virtual_addr as usize;
debug_assert!(file_offset % PAGE_SIZE == virtual_addr % PAGE_SIZE);
2023-04-04 03:32:52 +00:00
let page_cache_vmo = {
let inode = elf_file.inode();
inode.page_cache().ok_or(Error::with_message(
2023-04-04 03:32:52 +00:00
Errno::ENOENT,
"executable has no page cache",
))?
};
let segment_vmo = {
let vmo_offset = file_offset.align_down(PAGE_SIZE);
let map_start = virtual_addr.align_down(PAGE_SIZE);
let map_end = (virtual_addr + program_header.mem_size as usize).align_up(PAGE_SIZE);
let vmo_size = map_end - map_start;
debug_assert!(vmo_size >= (program_header.file_size as usize).align_up(PAGE_SIZE));
page_cache_vmo
.new_cow_child(vmo_offset..vmo_offset + vmo_size)?
.alloc()?
};
2023-03-31 05:52:00 +00:00
// Write zero as paddings. There are head padding and tail padding.
// Head padding: if the segment's virtual address is not page-aligned,
// then the bytes in first page from start to virtual address should be padded zeros.
// Tail padding: If the segment's mem_size is larger than file size,
// then the bytes that are not backed up by file content should be zeros.(usually .data/.bss sections).
// FIXME: Head padding may be removed.
// Head padding.
let page_offset = file_offset % PAGE_SIZE;
if page_offset != 0 {
let buffer = vec![0u8; page_offset];
segment_vmo.write_bytes(0, &buffer)?;
}
// Tail padding.
2023-04-04 03:32:52 +00:00
let segment_vmo_size = segment_vmo.size();
2023-03-31 05:52:00 +00:00
let tail_padding_offset = program_header.file_size as usize + page_offset;
2023-04-04 03:32:52 +00:00
if segment_vmo_size > tail_padding_offset {
let buffer = vec![0u8; segment_vmo_size - tail_padding_offset];
2023-03-31 05:52:00 +00:00
segment_vmo.write_bytes(tail_padding_offset, &buffer)?;
}
Ok(segment_vmo.to_dyn())
2023-03-07 09:13:35 +00:00
}
fn parse_segment_perm(flags: xmas_elf::program::Flags) -> VmPerm {
let mut vm_perm = VmPerm::empty();
if flags.is_read() {
vm_perm |= VmPerm::R;
}
2023-03-07 09:13:35 +00:00
if flags.is_write() {
vm_perm |= VmPerm::W;
}
2023-03-07 09:13:35 +00:00
if flags.is_execute() {
vm_perm |= VmPerm::X;
}
vm_perm
}
2023-04-04 07:13:32 +00:00
fn check_segment_align(program_header: &ProgramHeader64) -> Result<()> {
let align = program_header.align;
if align == 0 || align == 1 {
// no align requirement
return Ok(());
}
debug_assert!(align.is_power_of_two());
if !align.is_power_of_two() {
return_errno_with_message!(Errno::ENOEXEC, "segment align is invalid.");
}
debug_assert!(program_header.offset % align == program_header.virtual_addr % align);
if program_header.offset % align != program_header.virtual_addr % align {
return_errno_with_message!(Errno::ENOEXEC, "segment align is not satisfied.");
}
Ok(())
}