RHEL-kernel-ark/drivers/net/ethernet/freescale/enetc/enetc4_pf.c

757 lines
18 KiB
C

// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
/* Copyright 2024 NXP */
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/of_net.h>
#include <linux/of_platform.h>
#include <linux/unaligned.h>
#include "enetc_pf_common.h"
#define ENETC_SI_MAX_RING_NUM 8
static void enetc4_get_port_caps(struct enetc_pf *pf)
{
struct enetc_hw *hw = &pf->si->hw;
u32 val;
val = enetc_port_rd(hw, ENETC4_ECAPR1);
pf->caps.num_vsi = (val & ECAPR1_NUM_VSI) >> 24;
pf->caps.num_msix = ((val & ECAPR1_NUM_MSIX) >> 12) + 1;
val = enetc_port_rd(hw, ENETC4_ECAPR2);
pf->caps.num_rx_bdr = (val & ECAPR2_NUM_RX_BDR) >> 16;
pf->caps.num_tx_bdr = val & ECAPR2_NUM_TX_BDR;
val = enetc_port_rd(hw, ENETC4_PMCAPR);
pf->caps.half_duplex = (val & PMCAPR_HD) ? 1 : 0;
}
static void enetc4_pf_set_si_primary_mac(struct enetc_hw *hw, int si,
const u8 *addr)
{
u16 lower = get_unaligned_le16(addr + 4);
u32 upper = get_unaligned_le32(addr);
if (si != 0) {
__raw_writel(upper, hw->port + ENETC4_PSIPMAR0(si));
__raw_writew(lower, hw->port + ENETC4_PSIPMAR1(si));
} else {
__raw_writel(upper, hw->port + ENETC4_PMAR0);
__raw_writew(lower, hw->port + ENETC4_PMAR1);
}
}
static void enetc4_pf_get_si_primary_mac(struct enetc_hw *hw, int si,
u8 *addr)
{
u32 upper;
u16 lower;
upper = __raw_readl(hw->port + ENETC4_PSIPMAR0(si));
lower = __raw_readw(hw->port + ENETC4_PSIPMAR1(si));
put_unaligned_le32(upper, addr);
put_unaligned_le16(lower, addr + 4);
}
static const struct enetc_pf_ops enetc4_pf_ops = {
.set_si_primary_mac = enetc4_pf_set_si_primary_mac,
.get_si_primary_mac = enetc4_pf_get_si_primary_mac,
};
static int enetc4_pf_struct_init(struct enetc_si *si)
{
struct enetc_pf *pf = enetc_si_priv(si);
pf->si = si;
pf->total_vfs = pci_sriov_get_totalvfs(si->pdev);
pf->ops = &enetc4_pf_ops;
enetc4_get_port_caps(pf);
return 0;
}
static u32 enetc4_psicfgr0_val_construct(bool is_vf, u32 num_tx_bdr, u32 num_rx_bdr)
{
u32 val;
val = ENETC_PSICFGR0_SET_TXBDR(num_tx_bdr);
val |= ENETC_PSICFGR0_SET_RXBDR(num_rx_bdr);
val |= ENETC_PSICFGR0_SIVC(ENETC_VLAN_TYPE_C | ENETC_VLAN_TYPE_S);
if (is_vf)
val |= ENETC_PSICFGR0_VTE | ENETC_PSICFGR0_SIVIE;
return val;
}
static void enetc4_default_rings_allocation(struct enetc_pf *pf)
{
struct enetc_hw *hw = &pf->si->hw;
u32 num_rx_bdr, num_tx_bdr, val;
u32 vf_tx_bdr, vf_rx_bdr;
int i, rx_rem, tx_rem;
if (pf->caps.num_rx_bdr < ENETC_SI_MAX_RING_NUM + pf->caps.num_vsi)
num_rx_bdr = pf->caps.num_rx_bdr - pf->caps.num_vsi;
else
num_rx_bdr = ENETC_SI_MAX_RING_NUM;
if (pf->caps.num_tx_bdr < ENETC_SI_MAX_RING_NUM + pf->caps.num_vsi)
num_tx_bdr = pf->caps.num_tx_bdr - pf->caps.num_vsi;
else
num_tx_bdr = ENETC_SI_MAX_RING_NUM;
val = enetc4_psicfgr0_val_construct(false, num_tx_bdr, num_rx_bdr);
enetc_port_wr(hw, ENETC4_PSICFGR0(0), val);
num_rx_bdr = pf->caps.num_rx_bdr - num_rx_bdr;
rx_rem = num_rx_bdr % pf->caps.num_vsi;
num_rx_bdr = num_rx_bdr / pf->caps.num_vsi;
num_tx_bdr = pf->caps.num_tx_bdr - num_tx_bdr;
tx_rem = num_tx_bdr % pf->caps.num_vsi;
num_tx_bdr = num_tx_bdr / pf->caps.num_vsi;
for (i = 0; i < pf->caps.num_vsi; i++) {
vf_tx_bdr = (i < tx_rem) ? num_tx_bdr + 1 : num_tx_bdr;
vf_rx_bdr = (i < rx_rem) ? num_rx_bdr + 1 : num_rx_bdr;
val = enetc4_psicfgr0_val_construct(true, vf_tx_bdr, vf_rx_bdr);
enetc_port_wr(hw, ENETC4_PSICFGR0(i + 1), val);
}
}
static void enetc4_allocate_si_rings(struct enetc_pf *pf)
{
enetc4_default_rings_allocation(pf);
}
static void enetc4_pf_set_si_vlan_promisc(struct enetc_hw *hw, int si, bool en)
{
u32 val = enetc_port_rd(hw, ENETC4_PSIPVMR);
if (en)
val |= BIT(si);
else
val &= ~BIT(si);
enetc_port_wr(hw, ENETC4_PSIPVMR, val);
}
static void enetc4_set_default_si_vlan_promisc(struct enetc_pf *pf)
{
struct enetc_hw *hw = &pf->si->hw;
int num_si = pf->caps.num_vsi + 1;
int i;
/* enforce VLAN promiscuous mode for all SIs */
for (i = 0; i < num_si; i++)
enetc4_pf_set_si_vlan_promisc(hw, i, true);
}
/* Allocate the number of MSI-X vectors for per SI. */
static void enetc4_set_si_msix_num(struct enetc_pf *pf)
{
struct enetc_hw *hw = &pf->si->hw;
int i, num_msix, total_si;
u32 val;
total_si = pf->caps.num_vsi + 1;
num_msix = pf->caps.num_msix / total_si +
pf->caps.num_msix % total_si - 1;
val = num_msix & PSICFGR2_NUM_MSIX;
enetc_port_wr(hw, ENETC4_PSICFGR2(0), val);
num_msix = pf->caps.num_msix / total_si - 1;
val = num_msix & PSICFGR2_NUM_MSIX;
for (i = 0; i < pf->caps.num_vsi; i++)
enetc_port_wr(hw, ENETC4_PSICFGR2(i + 1), val);
}
static void enetc4_enable_all_si(struct enetc_pf *pf)
{
struct enetc_hw *hw = &pf->si->hw;
int num_si = pf->caps.num_vsi + 1;
u32 si_bitmap = 0;
int i;
/* Master enable for all SIs */
for (i = 0; i < num_si; i++)
si_bitmap |= PMR_SI_EN(i);
enetc_port_wr(hw, ENETC4_PMR, si_bitmap);
}
static void enetc4_configure_port_si(struct enetc_pf *pf)
{
struct enetc_hw *hw = &pf->si->hw;
enetc4_allocate_si_rings(pf);
/* Outer VLAN tag will be used for VLAN filtering */
enetc_port_wr(hw, ENETC4_PSIVLANFMR, PSIVLANFMR_VS);
enetc4_set_default_si_vlan_promisc(pf);
/* Disable SI MAC multicast & unicast promiscuous */
enetc_port_wr(hw, ENETC4_PSIPMMR, 0);
enetc4_set_si_msix_num(pf);
enetc4_enable_all_si(pf);
}
static void enetc4_pf_reset_tc_msdu(struct enetc_hw *hw)
{
u32 val = ENETC_MAC_MAXFRM_SIZE;
int tc;
val = u32_replace_bits(val, SDU_TYPE_MPDU, PTCTMSDUR_SDU_TYPE);
for (tc = 0; tc < ENETC_NUM_TC; tc++)
enetc_port_wr(hw, ENETC4_PTCTMSDUR(tc), val);
}
static void enetc4_set_trx_frame_size(struct enetc_pf *pf)
{
struct enetc_si *si = pf->si;
enetc_port_mac_wr(si, ENETC4_PM_MAXFRM(0),
ENETC_SET_MAXFRM(ENETC_MAC_MAXFRM_SIZE));
enetc4_pf_reset_tc_msdu(&si->hw);
}
static void enetc4_set_rss_key(struct enetc_hw *hw, const u8 *bytes)
{
int i;
for (i = 0; i < ENETC_RSSHASH_KEY_SIZE / 4; i++)
enetc_port_wr(hw, ENETC4_PRSSKR(i), ((u32 *)bytes)[i]);
}
static void enetc4_set_default_rss_key(struct enetc_pf *pf)
{
u8 hash_key[ENETC_RSSHASH_KEY_SIZE] = {0};
struct enetc_hw *hw = &pf->si->hw;
/* set up hash key */
get_random_bytes(hash_key, ENETC_RSSHASH_KEY_SIZE);
enetc4_set_rss_key(hw, hash_key);
}
static void enetc4_enable_trx(struct enetc_pf *pf)
{
struct enetc_hw *hw = &pf->si->hw;
/* Enable port transmit/receive */
enetc_port_wr(hw, ENETC4_POR, 0);
}
static void enetc4_configure_port(struct enetc_pf *pf)
{
enetc4_configure_port_si(pf);
enetc4_set_trx_frame_size(pf);
enetc4_set_default_rss_key(pf);
enetc4_enable_trx(pf);
}
static int enetc4_pf_init(struct enetc_pf *pf)
{
struct device *dev = &pf->si->pdev->dev;
int err;
/* Initialize the MAC address for PF and VFs */
err = enetc_setup_mac_addresses(dev->of_node, pf);
if (err) {
dev_err(dev, "Failed to set MAC addresses\n");
return err;
}
enetc4_configure_port(pf);
return 0;
}
static const struct net_device_ops enetc4_ndev_ops = {
.ndo_open = enetc_open,
.ndo_stop = enetc_close,
.ndo_start_xmit = enetc_xmit,
.ndo_get_stats = enetc_get_stats,
.ndo_set_mac_address = enetc_pf_set_mac_addr,
};
static struct phylink_pcs *
enetc4_pl_mac_select_pcs(struct phylink_config *config, phy_interface_t iface)
{
struct enetc_pf *pf = phylink_to_enetc_pf(config);
return pf->pcs;
}
static void enetc4_mac_config(struct enetc_pf *pf, unsigned int mode,
phy_interface_t phy_mode)
{
struct enetc_ndev_priv *priv = netdev_priv(pf->si->ndev);
struct enetc_si *si = pf->si;
u32 val;
val = enetc_port_mac_rd(si, ENETC4_PM_IF_MODE(0));
val &= ~(PM_IF_MODE_IFMODE | PM_IF_MODE_ENA);
switch (phy_mode) {
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII_TXID:
val |= IFMODE_RGMII;
/* We need to enable auto-negotiation for the MAC
* if its RGMII interface support In-Band status.
*/
if (phylink_autoneg_inband(mode))
val |= PM_IF_MODE_ENA;
break;
case PHY_INTERFACE_MODE_RMII:
val |= IFMODE_RMII;
break;
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_2500BASEX:
val |= IFMODE_SGMII;
break;
case PHY_INTERFACE_MODE_10GBASER:
case PHY_INTERFACE_MODE_XGMII:
case PHY_INTERFACE_MODE_USXGMII:
val |= IFMODE_XGMII;
break;
default:
dev_err(priv->dev,
"Unsupported PHY mode:%d\n", phy_mode);
return;
}
enetc_port_mac_wr(si, ENETC4_PM_IF_MODE(0), val);
}
static void enetc4_pl_mac_config(struct phylink_config *config, unsigned int mode,
const struct phylink_link_state *state)
{
struct enetc_pf *pf = phylink_to_enetc_pf(config);
enetc4_mac_config(pf, mode, state->interface);
}
static void enetc4_set_port_speed(struct enetc_ndev_priv *priv, int speed)
{
u32 old_speed = priv->speed;
u32 val;
if (speed == old_speed)
return;
val = enetc_port_rd(&priv->si->hw, ENETC4_PCR);
val &= ~PCR_PSPEED;
switch (speed) {
case SPEED_100:
case SPEED_1000:
case SPEED_2500:
case SPEED_10000:
val |= (PCR_PSPEED & PCR_PSPEED_VAL(speed));
break;
case SPEED_10:
default:
val |= (PCR_PSPEED & PCR_PSPEED_VAL(SPEED_10));
}
priv->speed = speed;
enetc_port_wr(&priv->si->hw, ENETC4_PCR, val);
}
static void enetc4_set_rgmii_mac(struct enetc_pf *pf, int speed, int duplex)
{
struct enetc_si *si = pf->si;
u32 old_val, val;
old_val = enetc_port_mac_rd(si, ENETC4_PM_IF_MODE(0));
val = old_val & ~(PM_IF_MODE_ENA | PM_IF_MODE_M10 | PM_IF_MODE_REVMII);
switch (speed) {
case SPEED_1000:
val = u32_replace_bits(val, SSP_1G, PM_IF_MODE_SSP);
break;
case SPEED_100:
val = u32_replace_bits(val, SSP_100M, PM_IF_MODE_SSP);
break;
case SPEED_10:
val = u32_replace_bits(val, SSP_10M, PM_IF_MODE_SSP);
}
val = u32_replace_bits(val, duplex == DUPLEX_FULL ? 0 : 1,
PM_IF_MODE_HD);
if (val == old_val)
return;
enetc_port_mac_wr(si, ENETC4_PM_IF_MODE(0), val);
}
static void enetc4_set_rmii_mac(struct enetc_pf *pf, int speed, int duplex)
{
struct enetc_si *si = pf->si;
u32 old_val, val;
old_val = enetc_port_mac_rd(si, ENETC4_PM_IF_MODE(0));
val = old_val & ~(PM_IF_MODE_ENA | PM_IF_MODE_SSP);
switch (speed) {
case SPEED_100:
val &= ~PM_IF_MODE_M10;
break;
case SPEED_10:
val |= PM_IF_MODE_M10;
}
val = u32_replace_bits(val, duplex == DUPLEX_FULL ? 0 : 1,
PM_IF_MODE_HD);
if (val == old_val)
return;
enetc_port_mac_wr(si, ENETC4_PM_IF_MODE(0), val);
}
static void enetc4_set_hd_flow_control(struct enetc_pf *pf, bool enable)
{
struct enetc_si *si = pf->si;
u32 old_val, val;
if (!pf->caps.half_duplex)
return;
old_val = enetc_port_mac_rd(si, ENETC4_PM_CMD_CFG(0));
val = u32_replace_bits(old_val, enable ? 1 : 0, PM_CMD_CFG_HD_FCEN);
if (val == old_val)
return;
enetc_port_mac_wr(si, ENETC4_PM_CMD_CFG(0), val);
}
static void enetc4_set_rx_pause(struct enetc_pf *pf, bool rx_pause)
{
struct enetc_si *si = pf->si;
u32 old_val, val;
old_val = enetc_port_mac_rd(si, ENETC4_PM_CMD_CFG(0));
val = u32_replace_bits(old_val, rx_pause ? 0 : 1, PM_CMD_CFG_PAUSE_IGN);
if (val == old_val)
return;
enetc_port_mac_wr(si, ENETC4_PM_CMD_CFG(0), val);
}
static void enetc4_set_tx_pause(struct enetc_pf *pf, int num_rxbdr, bool tx_pause)
{
u32 pause_off_thresh = 0, pause_on_thresh = 0;
u32 init_quanta = 0, refresh_quanta = 0;
struct enetc_hw *hw = &pf->si->hw;
u32 rbmr, old_rbmr;
int i;
for (i = 0; i < num_rxbdr; i++) {
old_rbmr = enetc_rxbdr_rd(hw, i, ENETC_RBMR);
rbmr = u32_replace_bits(old_rbmr, tx_pause ? 1 : 0, ENETC_RBMR_CM);
if (rbmr == old_rbmr)
continue;
enetc_rxbdr_wr(hw, i, ENETC_RBMR, rbmr);
}
if (tx_pause) {
/* When the port first enters congestion, send a PAUSE request
* with the maximum number of quanta. When the port exits
* congestion, it will automatically send a PAUSE frame with
* zero quanta.
*/
init_quanta = 0xffff;
/* Also, set up the refresh timer to send follow-up PAUSE
* frames at half the quanta value, in case the congestion
* condition persists.
*/
refresh_quanta = 0xffff / 2;
/* Start emitting PAUSE frames when 3 large frames (or more
* smaller frames) have accumulated in the FIFO waiting to be
* DMAed to the RX ring.
*/
pause_on_thresh = 3 * ENETC_MAC_MAXFRM_SIZE;
pause_off_thresh = 1 * ENETC_MAC_MAXFRM_SIZE;
}
enetc_port_mac_wr(pf->si, ENETC4_PM_PAUSE_QUANTA(0), init_quanta);
enetc_port_mac_wr(pf->si, ENETC4_PM_PAUSE_THRESH(0), refresh_quanta);
enetc_port_wr(hw, ENETC4_PPAUONTR, pause_on_thresh);
enetc_port_wr(hw, ENETC4_PPAUOFFTR, pause_off_thresh);
}
static void enetc4_enable_mac(struct enetc_pf *pf, bool en)
{
struct enetc_si *si = pf->si;
u32 val;
val = enetc_port_mac_rd(si, ENETC4_PM_CMD_CFG(0));
val &= ~(PM_CMD_CFG_TX_EN | PM_CMD_CFG_RX_EN);
val |= en ? (PM_CMD_CFG_TX_EN | PM_CMD_CFG_RX_EN) : 0;
enetc_port_mac_wr(si, ENETC4_PM_CMD_CFG(0), val);
}
static void enetc4_pl_mac_link_up(struct phylink_config *config,
struct phy_device *phy, unsigned int mode,
phy_interface_t interface, int speed,
int duplex, bool tx_pause, bool rx_pause)
{
struct enetc_pf *pf = phylink_to_enetc_pf(config);
struct enetc_si *si = pf->si;
struct enetc_ndev_priv *priv;
bool hd_fc = false;
priv = netdev_priv(si->ndev);
enetc4_set_port_speed(priv, speed);
if (!phylink_autoneg_inband(mode) &&
phy_interface_mode_is_rgmii(interface))
enetc4_set_rgmii_mac(pf, speed, duplex);
if (interface == PHY_INTERFACE_MODE_RMII)
enetc4_set_rmii_mac(pf, speed, duplex);
if (duplex == DUPLEX_FULL) {
/* When preemption is enabled, generation of PAUSE frames
* must be disabled, as stated in the IEEE 802.3 standard.
*/
if (priv->active_offloads & ENETC_F_QBU)
tx_pause = false;
} else { /* DUPLEX_HALF */
if (tx_pause || rx_pause)
hd_fc = true;
/* As per 802.3 annex 31B, PAUSE frames are only supported
* when the link is configured for full duplex operation.
*/
tx_pause = false;
rx_pause = false;
}
enetc4_set_hd_flow_control(pf, hd_fc);
enetc4_set_tx_pause(pf, priv->num_rx_rings, tx_pause);
enetc4_set_rx_pause(pf, rx_pause);
enetc4_enable_mac(pf, true);
}
static void enetc4_pl_mac_link_down(struct phylink_config *config,
unsigned int mode,
phy_interface_t interface)
{
struct enetc_pf *pf = phylink_to_enetc_pf(config);
enetc4_enable_mac(pf, false);
}
static const struct phylink_mac_ops enetc_pl_mac_ops = {
.mac_select_pcs = enetc4_pl_mac_select_pcs,
.mac_config = enetc4_pl_mac_config,
.mac_link_up = enetc4_pl_mac_link_up,
.mac_link_down = enetc4_pl_mac_link_down,
};
static void enetc4_pci_remove(void *data)
{
struct pci_dev *pdev = data;
enetc_pci_remove(pdev);
}
static int enetc4_link_init(struct enetc_ndev_priv *priv,
struct device_node *node)
{
struct enetc_pf *pf = enetc_si_priv(priv->si);
struct device *dev = priv->dev;
int err;
err = of_get_phy_mode(node, &pf->if_mode);
if (err) {
dev_err(dev, "Failed to get PHY mode\n");
return err;
}
err = enetc_mdiobus_create(pf, node);
if (err) {
dev_err(dev, "Failed to create MDIO bus\n");
return err;
}
err = enetc_phylink_create(priv, node, &enetc_pl_mac_ops);
if (err) {
dev_err(dev, "Failed to create phylink\n");
goto err_phylink_create;
}
return 0;
err_phylink_create:
enetc_mdiobus_destroy(pf);
return err;
}
static void enetc4_link_deinit(struct enetc_ndev_priv *priv)
{
struct enetc_pf *pf = enetc_si_priv(priv->si);
enetc_phylink_destroy(priv);
enetc_mdiobus_destroy(pf);
}
static int enetc4_pf_netdev_create(struct enetc_si *si)
{
struct device *dev = &si->pdev->dev;
struct enetc_ndev_priv *priv;
struct net_device *ndev;
int err;
ndev = alloc_etherdev_mqs(sizeof(struct enetc_ndev_priv),
si->num_tx_rings, si->num_rx_rings);
if (!ndev)
return -ENOMEM;
priv = netdev_priv(ndev);
priv->ref_clk = devm_clk_get_optional(dev, "ref");
if (IS_ERR(priv->ref_clk)) {
dev_err(dev, "Get reference clock failed\n");
err = PTR_ERR(priv->ref_clk);
goto err_clk_get;
}
enetc_pf_netdev_setup(si, ndev, &enetc4_ndev_ops);
enetc_init_si_rings_params(priv);
err = enetc_configure_si(priv);
if (err) {
dev_err(dev, "Failed to configure SI\n");
goto err_config_si;
}
err = enetc_alloc_msix(priv);
if (err) {
dev_err(dev, "Failed to alloc MSI-X\n");
goto err_alloc_msix;
}
err = enetc4_link_init(priv, dev->of_node);
if (err)
goto err_link_init;
err = register_netdev(ndev);
if (err) {
dev_err(dev, "Failed to register netdev\n");
goto err_reg_netdev;
}
return 0;
err_reg_netdev:
enetc4_link_deinit(priv);
err_link_init:
enetc_free_msix(priv);
err_alloc_msix:
err_config_si:
err_clk_get:
free_netdev(ndev);
return err;
}
static void enetc4_pf_netdev_destroy(struct enetc_si *si)
{
struct enetc_ndev_priv *priv = netdev_priv(si->ndev);
struct net_device *ndev = si->ndev;
unregister_netdev(ndev);
enetc4_link_deinit(priv);
enetc_free_msix(priv);
free_netdev(ndev);
}
static int enetc4_pf_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct device *dev = &pdev->dev;
struct enetc_si *si;
struct enetc_pf *pf;
int err;
err = enetc_pci_probe(pdev, KBUILD_MODNAME, sizeof(*pf));
if (err)
return dev_err_probe(dev, err, "PCIe probing failed\n");
err = devm_add_action_or_reset(dev, enetc4_pci_remove, pdev);
if (err)
return dev_err_probe(dev, err,
"Add enetc4_pci_remove() action failed\n");
/* si is the private data. */
si = pci_get_drvdata(pdev);
if (!si->hw.port || !si->hw.global)
return dev_err_probe(dev, -ENODEV,
"Couldn't map PF only space\n");
si->revision = enetc_get_ip_revision(&si->hw);
err = enetc_get_driver_data(si);
if (err)
return dev_err_probe(dev, err,
"Could not get VF driver data\n");
err = enetc4_pf_struct_init(si);
if (err)
return err;
pf = enetc_si_priv(si);
err = enetc4_pf_init(pf);
if (err)
return err;
enetc_get_si_caps(si);
return enetc4_pf_netdev_create(si);
}
static void enetc4_pf_remove(struct pci_dev *pdev)
{
struct enetc_si *si = pci_get_drvdata(pdev);
enetc4_pf_netdev_destroy(si);
}
static const struct pci_device_id enetc4_pf_id_table[] = {
{ PCI_DEVICE(NXP_ENETC_VENDOR_ID, NXP_ENETC_PF_DEV_ID) },
{ 0, } /* End of table. */
};
MODULE_DEVICE_TABLE(pci, enetc4_pf_id_table);
static struct pci_driver enetc4_pf_driver = {
.name = KBUILD_MODNAME,
.id_table = enetc4_pf_id_table,
.probe = enetc4_pf_probe,
.remove = enetc4_pf_remove,
};
module_pci_driver(enetc4_pf_driver);
MODULE_DESCRIPTION("ENETC4 PF Driver");
MODULE_LICENSE("Dual BSD/GPL");