Centos-kernel-stream-9/tools/bpf/bpftool/struct_ops.c

649 lines
14 KiB
C
Raw Normal View History

bpftool: Add struct_ops support This patch adds struct_ops support to the bpftool. To recap a bit on the recent bpf_struct_ops feature on the kernel side: It currently supports "struct tcp_congestion_ops" to be implemented in bpf. At a high level, bpf_struct_ops is struct_ops map populated with a number of bpf progs. bpf_struct_ops currently supports the "struct tcp_congestion_ops". However, the bpf_struct_ops design is generic enough that other kernel struct ops can be supported in the future. Although struct_ops is map+progs at a high lever, there are differences in details. For example, 1) After registering a struct_ops, the struct_ops is held by the kernel subsystem (e.g. tcp-cc). Thus, there is no need to pin a struct_ops map or its progs in order to keep them around. 2) To iterate all struct_ops in a system, it iterates all maps in type BPF_MAP_TYPE_STRUCT_OPS. BPF_MAP_TYPE_STRUCT_OPS is the current usual filter. In the future, it may need to filter by other struct_ops specific properties. e.g. filter by tcp_congestion_ops or other kernel subsystem ops in the future. 3) struct_ops requires the running kernel having BTF info. That allows more flexibility in handling other kernel structs. e.g. it can always dump the latest bpf_map_info. 4) Also, "struct_ops" command is not intended to repeat all features already provided by "map" or "prog". For example, if there really is a need to pin the struct_ops map, the user can use the "map" cmd to do that. While the first attempt was to reuse parts from map/prog.c, it ended up not a lot to share. The only obvious item is the map_parse_fds() but that still requires modifications to accommodate struct_ops map specific filtering (for the immediate and the future needs). Together with the earlier mentioned differences, it is better to part away from map/prog.c. The initial set of subcmds are, register, unregister, show, and dump. For register, it registers all struct_ops maps that can be found in an obj file. Option can be added in the future to specify a particular struct_ops map. Also, the common bpf_tcp_cc is stateless (e.g. bpf_cubic.c and bpf_dctcp.c). The "reuse map" feature is not implemented in this patch and it can be considered later also. For other subcmds, please see the man doc for details. A sample output of dump: [root@arch-fb-vm1 bpf]# bpftool struct_ops dump name cubic [{ "bpf_map_info": { "type": 26, "id": 64, "key_size": 4, "value_size": 256, "max_entries": 1, "map_flags": 0, "name": "cubic", "ifindex": 0, "btf_vmlinux_value_type_id": 18452, "netns_dev": 0, "netns_ino": 0, "btf_id": 52, "btf_key_type_id": 0, "btf_value_type_id": 0 } },{ "bpf_struct_ops_tcp_congestion_ops": { "refcnt": { "refs": { "counter": 1 } }, "state": "BPF_STRUCT_OPS_STATE_INUSE", "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 0, "init": "void (struct sock *) bictcp_init/prog_id:138", "release": "void (struct sock *) 0", "ssthresh": "u32 (struct sock *) bictcp_recalc_ssthresh/prog_id:141", "cong_avoid": "void (struct sock *, u32, u32) bictcp_cong_avoid/prog_id:140", "set_state": "void (struct sock *, u8) bictcp_state/prog_id:142", "cwnd_event": "void (struct sock *, enum tcp_ca_event) bictcp_cwnd_event/prog_id:139", "in_ack_event": "void (struct sock *, u32) 0", "undo_cwnd": "u32 (struct sock *) tcp_reno_undo_cwnd/prog_id:144", "pkts_acked": "void (struct sock *, const struct ack_sample *) bictcp_acked/prog_id:143", "min_tso_segs": "u32 (struct sock *) 0", "sndbuf_expand": "u32 (struct sock *) 0", "cong_control": "void (struct sock *, const struct rate_sample *) 0", "get_info": "size_t (struct sock *, u32, int *, union tcp_cc_info *) 0", "name": "bpf_cubic", "owner": 0 } } } ] Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20200318171656.129650-1-kafai@fb.com
2020-03-18 17:16:56 +00:00
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
/* Copyright (C) 2020 Facebook */
#include <errno.h>
#include <stdio.h>
#include <unistd.h>
#include <linux/err.h>
#include <bpf/bpf.h>
#include <bpf/btf.h>
#include <bpf/libbpf.h>
#include "json_writer.h"
#include "main.h"
#define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
static const struct btf_type *map_info_type;
static __u32 map_info_alloc_len;
static struct btf *btf_vmlinux;
static __s32 map_info_type_id;
struct res {
unsigned int nr_maps;
unsigned int nr_errs;
};
static const struct btf *get_btf_vmlinux(void)
{
if (btf_vmlinux)
return btf_vmlinux;
btf_vmlinux = libbpf_find_kernel_btf();
if (!btf_vmlinux)
bpftool: Add struct_ops support This patch adds struct_ops support to the bpftool. To recap a bit on the recent bpf_struct_ops feature on the kernel side: It currently supports "struct tcp_congestion_ops" to be implemented in bpf. At a high level, bpf_struct_ops is struct_ops map populated with a number of bpf progs. bpf_struct_ops currently supports the "struct tcp_congestion_ops". However, the bpf_struct_ops design is generic enough that other kernel struct ops can be supported in the future. Although struct_ops is map+progs at a high lever, there are differences in details. For example, 1) After registering a struct_ops, the struct_ops is held by the kernel subsystem (e.g. tcp-cc). Thus, there is no need to pin a struct_ops map or its progs in order to keep them around. 2) To iterate all struct_ops in a system, it iterates all maps in type BPF_MAP_TYPE_STRUCT_OPS. BPF_MAP_TYPE_STRUCT_OPS is the current usual filter. In the future, it may need to filter by other struct_ops specific properties. e.g. filter by tcp_congestion_ops or other kernel subsystem ops in the future. 3) struct_ops requires the running kernel having BTF info. That allows more flexibility in handling other kernel structs. e.g. it can always dump the latest bpf_map_info. 4) Also, "struct_ops" command is not intended to repeat all features already provided by "map" or "prog". For example, if there really is a need to pin the struct_ops map, the user can use the "map" cmd to do that. While the first attempt was to reuse parts from map/prog.c, it ended up not a lot to share. The only obvious item is the map_parse_fds() but that still requires modifications to accommodate struct_ops map specific filtering (for the immediate and the future needs). Together with the earlier mentioned differences, it is better to part away from map/prog.c. The initial set of subcmds are, register, unregister, show, and dump. For register, it registers all struct_ops maps that can be found in an obj file. Option can be added in the future to specify a particular struct_ops map. Also, the common bpf_tcp_cc is stateless (e.g. bpf_cubic.c and bpf_dctcp.c). The "reuse map" feature is not implemented in this patch and it can be considered later also. For other subcmds, please see the man doc for details. A sample output of dump: [root@arch-fb-vm1 bpf]# bpftool struct_ops dump name cubic [{ "bpf_map_info": { "type": 26, "id": 64, "key_size": 4, "value_size": 256, "max_entries": 1, "map_flags": 0, "name": "cubic", "ifindex": 0, "btf_vmlinux_value_type_id": 18452, "netns_dev": 0, "netns_ino": 0, "btf_id": 52, "btf_key_type_id": 0, "btf_value_type_id": 0 } },{ "bpf_struct_ops_tcp_congestion_ops": { "refcnt": { "refs": { "counter": 1 } }, "state": "BPF_STRUCT_OPS_STATE_INUSE", "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 0, "init": "void (struct sock *) bictcp_init/prog_id:138", "release": "void (struct sock *) 0", "ssthresh": "u32 (struct sock *) bictcp_recalc_ssthresh/prog_id:141", "cong_avoid": "void (struct sock *, u32, u32) bictcp_cong_avoid/prog_id:140", "set_state": "void (struct sock *, u8) bictcp_state/prog_id:142", "cwnd_event": "void (struct sock *, enum tcp_ca_event) bictcp_cwnd_event/prog_id:139", "in_ack_event": "void (struct sock *, u32) 0", "undo_cwnd": "u32 (struct sock *) tcp_reno_undo_cwnd/prog_id:144", "pkts_acked": "void (struct sock *, const struct ack_sample *) bictcp_acked/prog_id:143", "min_tso_segs": "u32 (struct sock *) 0", "sndbuf_expand": "u32 (struct sock *) 0", "cong_control": "void (struct sock *, const struct rate_sample *) 0", "get_info": "size_t (struct sock *, u32, int *, union tcp_cc_info *) 0", "name": "bpf_cubic", "owner": 0 } } } ] Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20200318171656.129650-1-kafai@fb.com
2020-03-18 17:16:56 +00:00
p_err("struct_ops requires kernel CONFIG_DEBUG_INFO_BTF=y");
return btf_vmlinux;
}
static const char *get_kern_struct_ops_name(const struct bpf_map_info *info)
{
const struct btf *kern_btf;
const struct btf_type *t;
const char *st_ops_name;
kern_btf = get_btf_vmlinux();
if (!kern_btf)
bpftool: Add struct_ops support This patch adds struct_ops support to the bpftool. To recap a bit on the recent bpf_struct_ops feature on the kernel side: It currently supports "struct tcp_congestion_ops" to be implemented in bpf. At a high level, bpf_struct_ops is struct_ops map populated with a number of bpf progs. bpf_struct_ops currently supports the "struct tcp_congestion_ops". However, the bpf_struct_ops design is generic enough that other kernel struct ops can be supported in the future. Although struct_ops is map+progs at a high lever, there are differences in details. For example, 1) After registering a struct_ops, the struct_ops is held by the kernel subsystem (e.g. tcp-cc). Thus, there is no need to pin a struct_ops map or its progs in order to keep them around. 2) To iterate all struct_ops in a system, it iterates all maps in type BPF_MAP_TYPE_STRUCT_OPS. BPF_MAP_TYPE_STRUCT_OPS is the current usual filter. In the future, it may need to filter by other struct_ops specific properties. e.g. filter by tcp_congestion_ops or other kernel subsystem ops in the future. 3) struct_ops requires the running kernel having BTF info. That allows more flexibility in handling other kernel structs. e.g. it can always dump the latest bpf_map_info. 4) Also, "struct_ops" command is not intended to repeat all features already provided by "map" or "prog". For example, if there really is a need to pin the struct_ops map, the user can use the "map" cmd to do that. While the first attempt was to reuse parts from map/prog.c, it ended up not a lot to share. The only obvious item is the map_parse_fds() but that still requires modifications to accommodate struct_ops map specific filtering (for the immediate and the future needs). Together with the earlier mentioned differences, it is better to part away from map/prog.c. The initial set of subcmds are, register, unregister, show, and dump. For register, it registers all struct_ops maps that can be found in an obj file. Option can be added in the future to specify a particular struct_ops map. Also, the common bpf_tcp_cc is stateless (e.g. bpf_cubic.c and bpf_dctcp.c). The "reuse map" feature is not implemented in this patch and it can be considered later also. For other subcmds, please see the man doc for details. A sample output of dump: [root@arch-fb-vm1 bpf]# bpftool struct_ops dump name cubic [{ "bpf_map_info": { "type": 26, "id": 64, "key_size": 4, "value_size": 256, "max_entries": 1, "map_flags": 0, "name": "cubic", "ifindex": 0, "btf_vmlinux_value_type_id": 18452, "netns_dev": 0, "netns_ino": 0, "btf_id": 52, "btf_key_type_id": 0, "btf_value_type_id": 0 } },{ "bpf_struct_ops_tcp_congestion_ops": { "refcnt": { "refs": { "counter": 1 } }, "state": "BPF_STRUCT_OPS_STATE_INUSE", "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 0, "init": "void (struct sock *) bictcp_init/prog_id:138", "release": "void (struct sock *) 0", "ssthresh": "u32 (struct sock *) bictcp_recalc_ssthresh/prog_id:141", "cong_avoid": "void (struct sock *, u32, u32) bictcp_cong_avoid/prog_id:140", "set_state": "void (struct sock *, u8) bictcp_state/prog_id:142", "cwnd_event": "void (struct sock *, enum tcp_ca_event) bictcp_cwnd_event/prog_id:139", "in_ack_event": "void (struct sock *, u32) 0", "undo_cwnd": "u32 (struct sock *) tcp_reno_undo_cwnd/prog_id:144", "pkts_acked": "void (struct sock *, const struct ack_sample *) bictcp_acked/prog_id:143", "min_tso_segs": "u32 (struct sock *) 0", "sndbuf_expand": "u32 (struct sock *) 0", "cong_control": "void (struct sock *, const struct rate_sample *) 0", "get_info": "size_t (struct sock *, u32, int *, union tcp_cc_info *) 0", "name": "bpf_cubic", "owner": 0 } } } ] Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20200318171656.129650-1-kafai@fb.com
2020-03-18 17:16:56 +00:00
return "<btf_vmlinux_not_found>";
t = btf__type_by_id(kern_btf, info->btf_vmlinux_value_type_id);
st_ops_name = btf__name_by_offset(kern_btf, t->name_off);
st_ops_name += strlen(STRUCT_OPS_VALUE_PREFIX);
return st_ops_name;
}
static __s32 get_map_info_type_id(void)
{
const struct btf *kern_btf;
if (map_info_type_id)
return map_info_type_id;
kern_btf = get_btf_vmlinux();
if (!kern_btf)
return 0;
bpftool: Add struct_ops support This patch adds struct_ops support to the bpftool. To recap a bit on the recent bpf_struct_ops feature on the kernel side: It currently supports "struct tcp_congestion_ops" to be implemented in bpf. At a high level, bpf_struct_ops is struct_ops map populated with a number of bpf progs. bpf_struct_ops currently supports the "struct tcp_congestion_ops". However, the bpf_struct_ops design is generic enough that other kernel struct ops can be supported in the future. Although struct_ops is map+progs at a high lever, there are differences in details. For example, 1) After registering a struct_ops, the struct_ops is held by the kernel subsystem (e.g. tcp-cc). Thus, there is no need to pin a struct_ops map or its progs in order to keep them around. 2) To iterate all struct_ops in a system, it iterates all maps in type BPF_MAP_TYPE_STRUCT_OPS. BPF_MAP_TYPE_STRUCT_OPS is the current usual filter. In the future, it may need to filter by other struct_ops specific properties. e.g. filter by tcp_congestion_ops or other kernel subsystem ops in the future. 3) struct_ops requires the running kernel having BTF info. That allows more flexibility in handling other kernel structs. e.g. it can always dump the latest bpf_map_info. 4) Also, "struct_ops" command is not intended to repeat all features already provided by "map" or "prog". For example, if there really is a need to pin the struct_ops map, the user can use the "map" cmd to do that. While the first attempt was to reuse parts from map/prog.c, it ended up not a lot to share. The only obvious item is the map_parse_fds() but that still requires modifications to accommodate struct_ops map specific filtering (for the immediate and the future needs). Together with the earlier mentioned differences, it is better to part away from map/prog.c. The initial set of subcmds are, register, unregister, show, and dump. For register, it registers all struct_ops maps that can be found in an obj file. Option can be added in the future to specify a particular struct_ops map. Also, the common bpf_tcp_cc is stateless (e.g. bpf_cubic.c and bpf_dctcp.c). The "reuse map" feature is not implemented in this patch and it can be considered later also. For other subcmds, please see the man doc for details. A sample output of dump: [root@arch-fb-vm1 bpf]# bpftool struct_ops dump name cubic [{ "bpf_map_info": { "type": 26, "id": 64, "key_size": 4, "value_size": 256, "max_entries": 1, "map_flags": 0, "name": "cubic", "ifindex": 0, "btf_vmlinux_value_type_id": 18452, "netns_dev": 0, "netns_ino": 0, "btf_id": 52, "btf_key_type_id": 0, "btf_value_type_id": 0 } },{ "bpf_struct_ops_tcp_congestion_ops": { "refcnt": { "refs": { "counter": 1 } }, "state": "BPF_STRUCT_OPS_STATE_INUSE", "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 0, "init": "void (struct sock *) bictcp_init/prog_id:138", "release": "void (struct sock *) 0", "ssthresh": "u32 (struct sock *) bictcp_recalc_ssthresh/prog_id:141", "cong_avoid": "void (struct sock *, u32, u32) bictcp_cong_avoid/prog_id:140", "set_state": "void (struct sock *, u8) bictcp_state/prog_id:142", "cwnd_event": "void (struct sock *, enum tcp_ca_event) bictcp_cwnd_event/prog_id:139", "in_ack_event": "void (struct sock *, u32) 0", "undo_cwnd": "u32 (struct sock *) tcp_reno_undo_cwnd/prog_id:144", "pkts_acked": "void (struct sock *, const struct ack_sample *) bictcp_acked/prog_id:143", "min_tso_segs": "u32 (struct sock *) 0", "sndbuf_expand": "u32 (struct sock *) 0", "cong_control": "void (struct sock *, const struct rate_sample *) 0", "get_info": "size_t (struct sock *, u32, int *, union tcp_cc_info *) 0", "name": "bpf_cubic", "owner": 0 } } } ] Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20200318171656.129650-1-kafai@fb.com
2020-03-18 17:16:56 +00:00
map_info_type_id = btf__find_by_name_kind(kern_btf, "bpf_map_info",
BTF_KIND_STRUCT);
if (map_info_type_id < 0) {
p_err("can't find bpf_map_info from btf_vmlinux");
return map_info_type_id;
}
map_info_type = btf__type_by_id(kern_btf, map_info_type_id);
/* Ensure map_info_alloc() has at least what the bpftool needs */
map_info_alloc_len = map_info_type->size;
if (map_info_alloc_len < sizeof(struct bpf_map_info))
map_info_alloc_len = sizeof(struct bpf_map_info);
return map_info_type_id;
}
/* If the subcmd needs to print out the bpf_map_info,
* it should always call map_info_alloc to allocate
* a bpf_map_info object instead of allocating it
* on the stack.
*
* map_info_alloc() will take the running kernel's btf
* into account. i.e. it will consider the
* sizeof(struct bpf_map_info) of the running kernel.
*
* It will enable the "struct_ops" cmd to print the latest
* "struct bpf_map_info".
*
* [ Recall that "struct_ops" requires the kernel's btf to
* be available ]
*/
static struct bpf_map_info *map_info_alloc(__u32 *alloc_len)
{
struct bpf_map_info *info;
if (get_map_info_type_id() < 0)
return NULL;
info = calloc(1, map_info_alloc_len);
if (!info)
p_err("mem alloc failed");
else
*alloc_len = map_info_alloc_len;
return info;
}
/* It iterates all struct_ops maps of the system.
* It returns the fd in "*res_fd" and map_info in "*info".
* In the very first iteration, info->id should be 0.
* An optional map "*name" filter can be specified.
* The filter can be made more flexible in the future.
* e.g. filter by kernel-struct-ops-name, regex-name, glob-name, ...etc.
*
* Return value:
* 1: A struct_ops map found. It is returned in "*res_fd" and "*info".
* The caller can continue to call get_next in the future.
* 0: No struct_ops map is returned.
* All struct_ops map has been found.
* -1: Error and the caller should abort the iteration.
*/
static int get_next_struct_ops_map(const char *name, int *res_fd,
struct bpf_map_info *info, __u32 info_len)
{
__u32 id = info->id;
int err, fd;
while (true) {
err = bpf_map_get_next_id(id, &id);
if (err) {
if (errno == ENOENT)
return 0;
p_err("can't get next map: %s", strerror(errno));
return -1;
}
fd = bpf_map_get_fd_by_id(id);
if (fd < 0) {
if (errno == ENOENT)
continue;
p_err("can't get map by id (%u): %s",
id, strerror(errno));
return -1;
}
err = bpf_map_get_info_by_fd(fd, info, &info_len);
bpftool: Add struct_ops support This patch adds struct_ops support to the bpftool. To recap a bit on the recent bpf_struct_ops feature on the kernel side: It currently supports "struct tcp_congestion_ops" to be implemented in bpf. At a high level, bpf_struct_ops is struct_ops map populated with a number of bpf progs. bpf_struct_ops currently supports the "struct tcp_congestion_ops". However, the bpf_struct_ops design is generic enough that other kernel struct ops can be supported in the future. Although struct_ops is map+progs at a high lever, there are differences in details. For example, 1) After registering a struct_ops, the struct_ops is held by the kernel subsystem (e.g. tcp-cc). Thus, there is no need to pin a struct_ops map or its progs in order to keep them around. 2) To iterate all struct_ops in a system, it iterates all maps in type BPF_MAP_TYPE_STRUCT_OPS. BPF_MAP_TYPE_STRUCT_OPS is the current usual filter. In the future, it may need to filter by other struct_ops specific properties. e.g. filter by tcp_congestion_ops or other kernel subsystem ops in the future. 3) struct_ops requires the running kernel having BTF info. That allows more flexibility in handling other kernel structs. e.g. it can always dump the latest bpf_map_info. 4) Also, "struct_ops" command is not intended to repeat all features already provided by "map" or "prog". For example, if there really is a need to pin the struct_ops map, the user can use the "map" cmd to do that. While the first attempt was to reuse parts from map/prog.c, it ended up not a lot to share. The only obvious item is the map_parse_fds() but that still requires modifications to accommodate struct_ops map specific filtering (for the immediate and the future needs). Together with the earlier mentioned differences, it is better to part away from map/prog.c. The initial set of subcmds are, register, unregister, show, and dump. For register, it registers all struct_ops maps that can be found in an obj file. Option can be added in the future to specify a particular struct_ops map. Also, the common bpf_tcp_cc is stateless (e.g. bpf_cubic.c and bpf_dctcp.c). The "reuse map" feature is not implemented in this patch and it can be considered later also. For other subcmds, please see the man doc for details. A sample output of dump: [root@arch-fb-vm1 bpf]# bpftool struct_ops dump name cubic [{ "bpf_map_info": { "type": 26, "id": 64, "key_size": 4, "value_size": 256, "max_entries": 1, "map_flags": 0, "name": "cubic", "ifindex": 0, "btf_vmlinux_value_type_id": 18452, "netns_dev": 0, "netns_ino": 0, "btf_id": 52, "btf_key_type_id": 0, "btf_value_type_id": 0 } },{ "bpf_struct_ops_tcp_congestion_ops": { "refcnt": { "refs": { "counter": 1 } }, "state": "BPF_STRUCT_OPS_STATE_INUSE", "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 0, "init": "void (struct sock *) bictcp_init/prog_id:138", "release": "void (struct sock *) 0", "ssthresh": "u32 (struct sock *) bictcp_recalc_ssthresh/prog_id:141", "cong_avoid": "void (struct sock *, u32, u32) bictcp_cong_avoid/prog_id:140", "set_state": "void (struct sock *, u8) bictcp_state/prog_id:142", "cwnd_event": "void (struct sock *, enum tcp_ca_event) bictcp_cwnd_event/prog_id:139", "in_ack_event": "void (struct sock *, u32) 0", "undo_cwnd": "u32 (struct sock *) tcp_reno_undo_cwnd/prog_id:144", "pkts_acked": "void (struct sock *, const struct ack_sample *) bictcp_acked/prog_id:143", "min_tso_segs": "u32 (struct sock *) 0", "sndbuf_expand": "u32 (struct sock *) 0", "cong_control": "void (struct sock *, const struct rate_sample *) 0", "get_info": "size_t (struct sock *, u32, int *, union tcp_cc_info *) 0", "name": "bpf_cubic", "owner": 0 } } } ] Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20200318171656.129650-1-kafai@fb.com
2020-03-18 17:16:56 +00:00
if (err) {
p_err("can't get map info: %s", strerror(errno));
close(fd);
return -1;
}
if (info->type == BPF_MAP_TYPE_STRUCT_OPS &&
(!name || !strcmp(name, info->name))) {
*res_fd = fd;
return 1;
}
close(fd);
}
}
static int cmd_retval(const struct res *res, bool must_have_one_map)
{
if (res->nr_errs || (!res->nr_maps && must_have_one_map))
return -1;
return 0;
}
/* "data" is the work_func private storage */
typedef int (*work_func)(int fd, const struct bpf_map_info *info, void *data,
struct json_writer *wtr);
/* Find all struct_ops map in the system.
* Filter out by "name" (if specified).
* Then call "func(fd, info, data, wtr)" on each struct_ops map found.
*/
static struct res do_search(const char *name, work_func func, void *data,
struct json_writer *wtr)
{
struct bpf_map_info *info;
struct res res = {};
__u32 info_len;
int fd, err;
info = map_info_alloc(&info_len);
if (!info) {
res.nr_errs++;
return res;
}
if (wtr)
jsonw_start_array(wtr);
while ((err = get_next_struct_ops_map(name, &fd, info, info_len)) == 1) {
res.nr_maps++;
err = func(fd, info, data, wtr);
if (err)
res.nr_errs++;
close(fd);
}
if (wtr)
jsonw_end_array(wtr);
if (err)
res.nr_errs++;
if (!wtr && name && !res.nr_errs && !res.nr_maps)
/* It is not printing empty [].
* Thus, needs to specifically say nothing found
* for "name" here.
*/
p_err("no struct_ops found for %s", name);
else if (!wtr && json_output && !res.nr_errs)
/* The "func()" above is not writing any json (i.e. !wtr
* test here).
*
* However, "-j" is enabled and there is no errs here,
* so call json_null() as the current convention of
* other cmds.
*/
jsonw_null(json_wtr);
free(info);
return res;
}
static struct res do_one_id(const char *id_str, work_func func, void *data,
struct json_writer *wtr)
{
struct bpf_map_info *info;
struct res res = {};
unsigned long id;
__u32 info_len;
char *endptr;
int fd;
id = strtoul(id_str, &endptr, 0);
if (*endptr || !id || id > UINT32_MAX) {
p_err("invalid id %s", id_str);
res.nr_errs++;
return res;
}
fd = bpf_map_get_fd_by_id(id);
if (fd < 0) {
bpftool: Add struct_ops support This patch adds struct_ops support to the bpftool. To recap a bit on the recent bpf_struct_ops feature on the kernel side: It currently supports "struct tcp_congestion_ops" to be implemented in bpf. At a high level, bpf_struct_ops is struct_ops map populated with a number of bpf progs. bpf_struct_ops currently supports the "struct tcp_congestion_ops". However, the bpf_struct_ops design is generic enough that other kernel struct ops can be supported in the future. Although struct_ops is map+progs at a high lever, there are differences in details. For example, 1) After registering a struct_ops, the struct_ops is held by the kernel subsystem (e.g. tcp-cc). Thus, there is no need to pin a struct_ops map or its progs in order to keep them around. 2) To iterate all struct_ops in a system, it iterates all maps in type BPF_MAP_TYPE_STRUCT_OPS. BPF_MAP_TYPE_STRUCT_OPS is the current usual filter. In the future, it may need to filter by other struct_ops specific properties. e.g. filter by tcp_congestion_ops or other kernel subsystem ops in the future. 3) struct_ops requires the running kernel having BTF info. That allows more flexibility in handling other kernel structs. e.g. it can always dump the latest bpf_map_info. 4) Also, "struct_ops" command is not intended to repeat all features already provided by "map" or "prog". For example, if there really is a need to pin the struct_ops map, the user can use the "map" cmd to do that. While the first attempt was to reuse parts from map/prog.c, it ended up not a lot to share. The only obvious item is the map_parse_fds() but that still requires modifications to accommodate struct_ops map specific filtering (for the immediate and the future needs). Together with the earlier mentioned differences, it is better to part away from map/prog.c. The initial set of subcmds are, register, unregister, show, and dump. For register, it registers all struct_ops maps that can be found in an obj file. Option can be added in the future to specify a particular struct_ops map. Also, the common bpf_tcp_cc is stateless (e.g. bpf_cubic.c and bpf_dctcp.c). The "reuse map" feature is not implemented in this patch and it can be considered later also. For other subcmds, please see the man doc for details. A sample output of dump: [root@arch-fb-vm1 bpf]# bpftool struct_ops dump name cubic [{ "bpf_map_info": { "type": 26, "id": 64, "key_size": 4, "value_size": 256, "max_entries": 1, "map_flags": 0, "name": "cubic", "ifindex": 0, "btf_vmlinux_value_type_id": 18452, "netns_dev": 0, "netns_ino": 0, "btf_id": 52, "btf_key_type_id": 0, "btf_value_type_id": 0 } },{ "bpf_struct_ops_tcp_congestion_ops": { "refcnt": { "refs": { "counter": 1 } }, "state": "BPF_STRUCT_OPS_STATE_INUSE", "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 0, "init": "void (struct sock *) bictcp_init/prog_id:138", "release": "void (struct sock *) 0", "ssthresh": "u32 (struct sock *) bictcp_recalc_ssthresh/prog_id:141", "cong_avoid": "void (struct sock *, u32, u32) bictcp_cong_avoid/prog_id:140", "set_state": "void (struct sock *, u8) bictcp_state/prog_id:142", "cwnd_event": "void (struct sock *, enum tcp_ca_event) bictcp_cwnd_event/prog_id:139", "in_ack_event": "void (struct sock *, u32) 0", "undo_cwnd": "u32 (struct sock *) tcp_reno_undo_cwnd/prog_id:144", "pkts_acked": "void (struct sock *, const struct ack_sample *) bictcp_acked/prog_id:143", "min_tso_segs": "u32 (struct sock *) 0", "sndbuf_expand": "u32 (struct sock *) 0", "cong_control": "void (struct sock *, const struct rate_sample *) 0", "get_info": "size_t (struct sock *, u32, int *, union tcp_cc_info *) 0", "name": "bpf_cubic", "owner": 0 } } } ] Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20200318171656.129650-1-kafai@fb.com
2020-03-18 17:16:56 +00:00
p_err("can't get map by id (%lu): %s", id, strerror(errno));
res.nr_errs++;
return res;
}
info = map_info_alloc(&info_len);
if (!info) {
res.nr_errs++;
goto done;
}
if (bpf_map_get_info_by_fd(fd, info, &info_len)) {
bpftool: Add struct_ops support This patch adds struct_ops support to the bpftool. To recap a bit on the recent bpf_struct_ops feature on the kernel side: It currently supports "struct tcp_congestion_ops" to be implemented in bpf. At a high level, bpf_struct_ops is struct_ops map populated with a number of bpf progs. bpf_struct_ops currently supports the "struct tcp_congestion_ops". However, the bpf_struct_ops design is generic enough that other kernel struct ops can be supported in the future. Although struct_ops is map+progs at a high lever, there are differences in details. For example, 1) After registering a struct_ops, the struct_ops is held by the kernel subsystem (e.g. tcp-cc). Thus, there is no need to pin a struct_ops map or its progs in order to keep them around. 2) To iterate all struct_ops in a system, it iterates all maps in type BPF_MAP_TYPE_STRUCT_OPS. BPF_MAP_TYPE_STRUCT_OPS is the current usual filter. In the future, it may need to filter by other struct_ops specific properties. e.g. filter by tcp_congestion_ops or other kernel subsystem ops in the future. 3) struct_ops requires the running kernel having BTF info. That allows more flexibility in handling other kernel structs. e.g. it can always dump the latest bpf_map_info. 4) Also, "struct_ops" command is not intended to repeat all features already provided by "map" or "prog". For example, if there really is a need to pin the struct_ops map, the user can use the "map" cmd to do that. While the first attempt was to reuse parts from map/prog.c, it ended up not a lot to share. The only obvious item is the map_parse_fds() but that still requires modifications to accommodate struct_ops map specific filtering (for the immediate and the future needs). Together with the earlier mentioned differences, it is better to part away from map/prog.c. The initial set of subcmds are, register, unregister, show, and dump. For register, it registers all struct_ops maps that can be found in an obj file. Option can be added in the future to specify a particular struct_ops map. Also, the common bpf_tcp_cc is stateless (e.g. bpf_cubic.c and bpf_dctcp.c). The "reuse map" feature is not implemented in this patch and it can be considered later also. For other subcmds, please see the man doc for details. A sample output of dump: [root@arch-fb-vm1 bpf]# bpftool struct_ops dump name cubic [{ "bpf_map_info": { "type": 26, "id": 64, "key_size": 4, "value_size": 256, "max_entries": 1, "map_flags": 0, "name": "cubic", "ifindex": 0, "btf_vmlinux_value_type_id": 18452, "netns_dev": 0, "netns_ino": 0, "btf_id": 52, "btf_key_type_id": 0, "btf_value_type_id": 0 } },{ "bpf_struct_ops_tcp_congestion_ops": { "refcnt": { "refs": { "counter": 1 } }, "state": "BPF_STRUCT_OPS_STATE_INUSE", "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 0, "init": "void (struct sock *) bictcp_init/prog_id:138", "release": "void (struct sock *) 0", "ssthresh": "u32 (struct sock *) bictcp_recalc_ssthresh/prog_id:141", "cong_avoid": "void (struct sock *, u32, u32) bictcp_cong_avoid/prog_id:140", "set_state": "void (struct sock *, u8) bictcp_state/prog_id:142", "cwnd_event": "void (struct sock *, enum tcp_ca_event) bictcp_cwnd_event/prog_id:139", "in_ack_event": "void (struct sock *, u32) 0", "undo_cwnd": "u32 (struct sock *) tcp_reno_undo_cwnd/prog_id:144", "pkts_acked": "void (struct sock *, const struct ack_sample *) bictcp_acked/prog_id:143", "min_tso_segs": "u32 (struct sock *) 0", "sndbuf_expand": "u32 (struct sock *) 0", "cong_control": "void (struct sock *, const struct rate_sample *) 0", "get_info": "size_t (struct sock *, u32, int *, union tcp_cc_info *) 0", "name": "bpf_cubic", "owner": 0 } } } ] Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20200318171656.129650-1-kafai@fb.com
2020-03-18 17:16:56 +00:00
p_err("can't get map info: %s", strerror(errno));
res.nr_errs++;
goto done;
}
if (info->type != BPF_MAP_TYPE_STRUCT_OPS) {
p_err("%s id %u is not a struct_ops map", info->name, info->id);
res.nr_errs++;
goto done;
}
res.nr_maps++;
if (wtr)
jsonw_start_array(wtr);
bpftool: Add struct_ops support This patch adds struct_ops support to the bpftool. To recap a bit on the recent bpf_struct_ops feature on the kernel side: It currently supports "struct tcp_congestion_ops" to be implemented in bpf. At a high level, bpf_struct_ops is struct_ops map populated with a number of bpf progs. bpf_struct_ops currently supports the "struct tcp_congestion_ops". However, the bpf_struct_ops design is generic enough that other kernel struct ops can be supported in the future. Although struct_ops is map+progs at a high lever, there are differences in details. For example, 1) After registering a struct_ops, the struct_ops is held by the kernel subsystem (e.g. tcp-cc). Thus, there is no need to pin a struct_ops map or its progs in order to keep them around. 2) To iterate all struct_ops in a system, it iterates all maps in type BPF_MAP_TYPE_STRUCT_OPS. BPF_MAP_TYPE_STRUCT_OPS is the current usual filter. In the future, it may need to filter by other struct_ops specific properties. e.g. filter by tcp_congestion_ops or other kernel subsystem ops in the future. 3) struct_ops requires the running kernel having BTF info. That allows more flexibility in handling other kernel structs. e.g. it can always dump the latest bpf_map_info. 4) Also, "struct_ops" command is not intended to repeat all features already provided by "map" or "prog". For example, if there really is a need to pin the struct_ops map, the user can use the "map" cmd to do that. While the first attempt was to reuse parts from map/prog.c, it ended up not a lot to share. The only obvious item is the map_parse_fds() but that still requires modifications to accommodate struct_ops map specific filtering (for the immediate and the future needs). Together with the earlier mentioned differences, it is better to part away from map/prog.c. The initial set of subcmds are, register, unregister, show, and dump. For register, it registers all struct_ops maps that can be found in an obj file. Option can be added in the future to specify a particular struct_ops map. Also, the common bpf_tcp_cc is stateless (e.g. bpf_cubic.c and bpf_dctcp.c). The "reuse map" feature is not implemented in this patch and it can be considered later also. For other subcmds, please see the man doc for details. A sample output of dump: [root@arch-fb-vm1 bpf]# bpftool struct_ops dump name cubic [{ "bpf_map_info": { "type": 26, "id": 64, "key_size": 4, "value_size": 256, "max_entries": 1, "map_flags": 0, "name": "cubic", "ifindex": 0, "btf_vmlinux_value_type_id": 18452, "netns_dev": 0, "netns_ino": 0, "btf_id": 52, "btf_key_type_id": 0, "btf_value_type_id": 0 } },{ "bpf_struct_ops_tcp_congestion_ops": { "refcnt": { "refs": { "counter": 1 } }, "state": "BPF_STRUCT_OPS_STATE_INUSE", "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 0, "init": "void (struct sock *) bictcp_init/prog_id:138", "release": "void (struct sock *) 0", "ssthresh": "u32 (struct sock *) bictcp_recalc_ssthresh/prog_id:141", "cong_avoid": "void (struct sock *, u32, u32) bictcp_cong_avoid/prog_id:140", "set_state": "void (struct sock *, u8) bictcp_state/prog_id:142", "cwnd_event": "void (struct sock *, enum tcp_ca_event) bictcp_cwnd_event/prog_id:139", "in_ack_event": "void (struct sock *, u32) 0", "undo_cwnd": "u32 (struct sock *) tcp_reno_undo_cwnd/prog_id:144", "pkts_acked": "void (struct sock *, const struct ack_sample *) bictcp_acked/prog_id:143", "min_tso_segs": "u32 (struct sock *) 0", "sndbuf_expand": "u32 (struct sock *) 0", "cong_control": "void (struct sock *, const struct rate_sample *) 0", "get_info": "size_t (struct sock *, u32, int *, union tcp_cc_info *) 0", "name": "bpf_cubic", "owner": 0 } } } ] Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20200318171656.129650-1-kafai@fb.com
2020-03-18 17:16:56 +00:00
if (func(fd, info, data, wtr))
res.nr_errs++;
else if (!wtr && json_output)
/* The "func()" above is not writing any json (i.e. !wtr
* test here).
*
* However, "-j" is enabled and there is no errs here,
* so call json_null() as the current convention of
* other cmds.
*/
jsonw_null(json_wtr);
if (wtr)
jsonw_end_array(wtr);
bpftool: Add struct_ops support This patch adds struct_ops support to the bpftool. To recap a bit on the recent bpf_struct_ops feature on the kernel side: It currently supports "struct tcp_congestion_ops" to be implemented in bpf. At a high level, bpf_struct_ops is struct_ops map populated with a number of bpf progs. bpf_struct_ops currently supports the "struct tcp_congestion_ops". However, the bpf_struct_ops design is generic enough that other kernel struct ops can be supported in the future. Although struct_ops is map+progs at a high lever, there are differences in details. For example, 1) After registering a struct_ops, the struct_ops is held by the kernel subsystem (e.g. tcp-cc). Thus, there is no need to pin a struct_ops map or its progs in order to keep them around. 2) To iterate all struct_ops in a system, it iterates all maps in type BPF_MAP_TYPE_STRUCT_OPS. BPF_MAP_TYPE_STRUCT_OPS is the current usual filter. In the future, it may need to filter by other struct_ops specific properties. e.g. filter by tcp_congestion_ops or other kernel subsystem ops in the future. 3) struct_ops requires the running kernel having BTF info. That allows more flexibility in handling other kernel structs. e.g. it can always dump the latest bpf_map_info. 4) Also, "struct_ops" command is not intended to repeat all features already provided by "map" or "prog". For example, if there really is a need to pin the struct_ops map, the user can use the "map" cmd to do that. While the first attempt was to reuse parts from map/prog.c, it ended up not a lot to share. The only obvious item is the map_parse_fds() but that still requires modifications to accommodate struct_ops map specific filtering (for the immediate and the future needs). Together with the earlier mentioned differences, it is better to part away from map/prog.c. The initial set of subcmds are, register, unregister, show, and dump. For register, it registers all struct_ops maps that can be found in an obj file. Option can be added in the future to specify a particular struct_ops map. Also, the common bpf_tcp_cc is stateless (e.g. bpf_cubic.c and bpf_dctcp.c). The "reuse map" feature is not implemented in this patch and it can be considered later also. For other subcmds, please see the man doc for details. A sample output of dump: [root@arch-fb-vm1 bpf]# bpftool struct_ops dump name cubic [{ "bpf_map_info": { "type": 26, "id": 64, "key_size": 4, "value_size": 256, "max_entries": 1, "map_flags": 0, "name": "cubic", "ifindex": 0, "btf_vmlinux_value_type_id": 18452, "netns_dev": 0, "netns_ino": 0, "btf_id": 52, "btf_key_type_id": 0, "btf_value_type_id": 0 } },{ "bpf_struct_ops_tcp_congestion_ops": { "refcnt": { "refs": { "counter": 1 } }, "state": "BPF_STRUCT_OPS_STATE_INUSE", "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 0, "init": "void (struct sock *) bictcp_init/prog_id:138", "release": "void (struct sock *) 0", "ssthresh": "u32 (struct sock *) bictcp_recalc_ssthresh/prog_id:141", "cong_avoid": "void (struct sock *, u32, u32) bictcp_cong_avoid/prog_id:140", "set_state": "void (struct sock *, u8) bictcp_state/prog_id:142", "cwnd_event": "void (struct sock *, enum tcp_ca_event) bictcp_cwnd_event/prog_id:139", "in_ack_event": "void (struct sock *, u32) 0", "undo_cwnd": "u32 (struct sock *) tcp_reno_undo_cwnd/prog_id:144", "pkts_acked": "void (struct sock *, const struct ack_sample *) bictcp_acked/prog_id:143", "min_tso_segs": "u32 (struct sock *) 0", "sndbuf_expand": "u32 (struct sock *) 0", "cong_control": "void (struct sock *, const struct rate_sample *) 0", "get_info": "size_t (struct sock *, u32, int *, union tcp_cc_info *) 0", "name": "bpf_cubic", "owner": 0 } } } ] Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20200318171656.129650-1-kafai@fb.com
2020-03-18 17:16:56 +00:00
done:
free(info);
close(fd);
return res;
}
static struct res do_work_on_struct_ops(const char *search_type,
const char *search_term,
work_func func, void *data,
struct json_writer *wtr)
{
if (search_type) {
if (is_prefix(search_type, "id"))
return do_one_id(search_term, func, data, wtr);
else if (!is_prefix(search_type, "name"))
usage();
}
return do_search(search_term, func, data, wtr);
}
static int __do_show(int fd, const struct bpf_map_info *info, void *data,
struct json_writer *wtr)
{
if (wtr) {
jsonw_start_object(wtr);
jsonw_uint_field(wtr, "id", info->id);
jsonw_string_field(wtr, "name", info->name);
jsonw_string_field(wtr, "kernel_struct_ops",
get_kern_struct_ops_name(info));
jsonw_end_object(wtr);
} else {
printf("%u: %-15s %-32s\n", info->id, info->name,
get_kern_struct_ops_name(info));
}
return 0;
}
static int do_show(int argc, char **argv)
{
const char *search_type = NULL, *search_term = NULL;
struct res res;
if (argc && argc != 2)
usage();
if (argc == 2) {
search_type = GET_ARG();
search_term = GET_ARG();
}
res = do_work_on_struct_ops(search_type, search_term, __do_show,
NULL, json_wtr);
return cmd_retval(&res, !!search_term);
}
static int __do_dump(int fd, const struct bpf_map_info *info, void *data,
struct json_writer *wtr)
{
struct btf_dumper *d = (struct btf_dumper *)data;
const struct btf_type *struct_ops_type;
const struct btf *kern_btf = d->btf;
const char *struct_ops_name;
int zero = 0;
void *value;
/* note: d->jw == wtr */
kern_btf = d->btf;
/* The kernel supporting BPF_MAP_TYPE_STRUCT_OPS must have
* btf_vmlinux_value_type_id.
*/
struct_ops_type = btf__type_by_id(kern_btf,
info->btf_vmlinux_value_type_id);
struct_ops_name = btf__name_by_offset(kern_btf,
struct_ops_type->name_off);
value = calloc(1, info->value_size);
if (!value) {
p_err("mem alloc failed");
return -1;
}
if (bpf_map_lookup_elem(fd, &zero, value)) {
p_err("can't lookup struct_ops map %s id %u",
info->name, info->id);
free(value);
return -1;
}
jsonw_start_object(wtr);
jsonw_name(wtr, "bpf_map_info");
btf_dumper_type(d, map_info_type_id, (void *)info);
jsonw_end_object(wtr);
jsonw_start_object(wtr);
jsonw_name(wtr, struct_ops_name);
btf_dumper_type(d, info->btf_vmlinux_value_type_id, value);
jsonw_end_object(wtr);
free(value);
return 0;
}
static int do_dump(int argc, char **argv)
{
const char *search_type = NULL, *search_term = NULL;
json_writer_t *wtr = json_wtr;
const struct btf *kern_btf;
struct btf_dumper d = {};
struct res res;
if (argc && argc != 2)
usage();
if (argc == 2) {
search_type = GET_ARG();
search_term = GET_ARG();
}
kern_btf = get_btf_vmlinux();
if (!kern_btf)
bpftool: Add struct_ops support This patch adds struct_ops support to the bpftool. To recap a bit on the recent bpf_struct_ops feature on the kernel side: It currently supports "struct tcp_congestion_ops" to be implemented in bpf. At a high level, bpf_struct_ops is struct_ops map populated with a number of bpf progs. bpf_struct_ops currently supports the "struct tcp_congestion_ops". However, the bpf_struct_ops design is generic enough that other kernel struct ops can be supported in the future. Although struct_ops is map+progs at a high lever, there are differences in details. For example, 1) After registering a struct_ops, the struct_ops is held by the kernel subsystem (e.g. tcp-cc). Thus, there is no need to pin a struct_ops map or its progs in order to keep them around. 2) To iterate all struct_ops in a system, it iterates all maps in type BPF_MAP_TYPE_STRUCT_OPS. BPF_MAP_TYPE_STRUCT_OPS is the current usual filter. In the future, it may need to filter by other struct_ops specific properties. e.g. filter by tcp_congestion_ops or other kernel subsystem ops in the future. 3) struct_ops requires the running kernel having BTF info. That allows more flexibility in handling other kernel structs. e.g. it can always dump the latest bpf_map_info. 4) Also, "struct_ops" command is not intended to repeat all features already provided by "map" or "prog". For example, if there really is a need to pin the struct_ops map, the user can use the "map" cmd to do that. While the first attempt was to reuse parts from map/prog.c, it ended up not a lot to share. The only obvious item is the map_parse_fds() but that still requires modifications to accommodate struct_ops map specific filtering (for the immediate and the future needs). Together with the earlier mentioned differences, it is better to part away from map/prog.c. The initial set of subcmds are, register, unregister, show, and dump. For register, it registers all struct_ops maps that can be found in an obj file. Option can be added in the future to specify a particular struct_ops map. Also, the common bpf_tcp_cc is stateless (e.g. bpf_cubic.c and bpf_dctcp.c). The "reuse map" feature is not implemented in this patch and it can be considered later also. For other subcmds, please see the man doc for details. A sample output of dump: [root@arch-fb-vm1 bpf]# bpftool struct_ops dump name cubic [{ "bpf_map_info": { "type": 26, "id": 64, "key_size": 4, "value_size": 256, "max_entries": 1, "map_flags": 0, "name": "cubic", "ifindex": 0, "btf_vmlinux_value_type_id": 18452, "netns_dev": 0, "netns_ino": 0, "btf_id": 52, "btf_key_type_id": 0, "btf_value_type_id": 0 } },{ "bpf_struct_ops_tcp_congestion_ops": { "refcnt": { "refs": { "counter": 1 } }, "state": "BPF_STRUCT_OPS_STATE_INUSE", "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 0, "init": "void (struct sock *) bictcp_init/prog_id:138", "release": "void (struct sock *) 0", "ssthresh": "u32 (struct sock *) bictcp_recalc_ssthresh/prog_id:141", "cong_avoid": "void (struct sock *, u32, u32) bictcp_cong_avoid/prog_id:140", "set_state": "void (struct sock *, u8) bictcp_state/prog_id:142", "cwnd_event": "void (struct sock *, enum tcp_ca_event) bictcp_cwnd_event/prog_id:139", "in_ack_event": "void (struct sock *, u32) 0", "undo_cwnd": "u32 (struct sock *) tcp_reno_undo_cwnd/prog_id:144", "pkts_acked": "void (struct sock *, const struct ack_sample *) bictcp_acked/prog_id:143", "min_tso_segs": "u32 (struct sock *) 0", "sndbuf_expand": "u32 (struct sock *) 0", "cong_control": "void (struct sock *, const struct rate_sample *) 0", "get_info": "size_t (struct sock *, u32, int *, union tcp_cc_info *) 0", "name": "bpf_cubic", "owner": 0 } } } ] Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20200318171656.129650-1-kafai@fb.com
2020-03-18 17:16:56 +00:00
return -1;
if (!json_output) {
wtr = jsonw_new(stdout);
if (!wtr) {
p_err("can't create json writer");
return -1;
}
jsonw_pretty(wtr, true);
}
d.btf = kern_btf;
d.jw = wtr;
d.is_plain_text = !json_output;
d.prog_id_as_func_ptr = true;
res = do_work_on_struct_ops(search_type, search_term, __do_dump, &d,
wtr);
if (!json_output)
jsonw_destroy(&wtr);
return cmd_retval(&res, !!search_term);
}
static int __do_unregister(int fd, const struct bpf_map_info *info, void *data,
struct json_writer *wtr)
{
int zero = 0;
if (bpf_map_delete_elem(fd, &zero)) {
p_err("can't unload %s %s id %u: %s",
get_kern_struct_ops_name(info), info->name,
info->id, strerror(errno));
return -1;
}
p_info("Unregistered %s %s id %u",
get_kern_struct_ops_name(info), info->name,
info->id);
return 0;
}
static int do_unregister(int argc, char **argv)
{
const char *search_type, *search_term;
struct res res;
if (argc != 2)
usage();
search_type = GET_ARG();
search_term = GET_ARG();
res = do_work_on_struct_ops(search_type, search_term,
__do_unregister, NULL, NULL);
return cmd_retval(&res, true);
}
static int pin_link(struct bpf_link *link, const char *pindir,
const char *name)
{
char pinfile[PATH_MAX];
int err;
err = pathname_concat(pinfile, sizeof(pinfile), pindir, name);
if (err)
return -1;
return bpf_link__pin(link, pinfile);
}
bpftool: Add struct_ops support This patch adds struct_ops support to the bpftool. To recap a bit on the recent bpf_struct_ops feature on the kernel side: It currently supports "struct tcp_congestion_ops" to be implemented in bpf. At a high level, bpf_struct_ops is struct_ops map populated with a number of bpf progs. bpf_struct_ops currently supports the "struct tcp_congestion_ops". However, the bpf_struct_ops design is generic enough that other kernel struct ops can be supported in the future. Although struct_ops is map+progs at a high lever, there are differences in details. For example, 1) After registering a struct_ops, the struct_ops is held by the kernel subsystem (e.g. tcp-cc). Thus, there is no need to pin a struct_ops map or its progs in order to keep them around. 2) To iterate all struct_ops in a system, it iterates all maps in type BPF_MAP_TYPE_STRUCT_OPS. BPF_MAP_TYPE_STRUCT_OPS is the current usual filter. In the future, it may need to filter by other struct_ops specific properties. e.g. filter by tcp_congestion_ops or other kernel subsystem ops in the future. 3) struct_ops requires the running kernel having BTF info. That allows more flexibility in handling other kernel structs. e.g. it can always dump the latest bpf_map_info. 4) Also, "struct_ops" command is not intended to repeat all features already provided by "map" or "prog". For example, if there really is a need to pin the struct_ops map, the user can use the "map" cmd to do that. While the first attempt was to reuse parts from map/prog.c, it ended up not a lot to share. The only obvious item is the map_parse_fds() but that still requires modifications to accommodate struct_ops map specific filtering (for the immediate and the future needs). Together with the earlier mentioned differences, it is better to part away from map/prog.c. The initial set of subcmds are, register, unregister, show, and dump. For register, it registers all struct_ops maps that can be found in an obj file. Option can be added in the future to specify a particular struct_ops map. Also, the common bpf_tcp_cc is stateless (e.g. bpf_cubic.c and bpf_dctcp.c). The "reuse map" feature is not implemented in this patch and it can be considered later also. For other subcmds, please see the man doc for details. A sample output of dump: [root@arch-fb-vm1 bpf]# bpftool struct_ops dump name cubic [{ "bpf_map_info": { "type": 26, "id": 64, "key_size": 4, "value_size": 256, "max_entries": 1, "map_flags": 0, "name": "cubic", "ifindex": 0, "btf_vmlinux_value_type_id": 18452, "netns_dev": 0, "netns_ino": 0, "btf_id": 52, "btf_key_type_id": 0, "btf_value_type_id": 0 } },{ "bpf_struct_ops_tcp_congestion_ops": { "refcnt": { "refs": { "counter": 1 } }, "state": "BPF_STRUCT_OPS_STATE_INUSE", "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 0, "init": "void (struct sock *) bictcp_init/prog_id:138", "release": "void (struct sock *) 0", "ssthresh": "u32 (struct sock *) bictcp_recalc_ssthresh/prog_id:141", "cong_avoid": "void (struct sock *, u32, u32) bictcp_cong_avoid/prog_id:140", "set_state": "void (struct sock *, u8) bictcp_state/prog_id:142", "cwnd_event": "void (struct sock *, enum tcp_ca_event) bictcp_cwnd_event/prog_id:139", "in_ack_event": "void (struct sock *, u32) 0", "undo_cwnd": "u32 (struct sock *) tcp_reno_undo_cwnd/prog_id:144", "pkts_acked": "void (struct sock *, const struct ack_sample *) bictcp_acked/prog_id:143", "min_tso_segs": "u32 (struct sock *) 0", "sndbuf_expand": "u32 (struct sock *) 0", "cong_control": "void (struct sock *, const struct rate_sample *) 0", "get_info": "size_t (struct sock *, u32, int *, union tcp_cc_info *) 0", "name": "bpf_cubic", "owner": 0 } } } ] Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20200318171656.129650-1-kafai@fb.com
2020-03-18 17:16:56 +00:00
static int do_register(int argc, char **argv)
{
LIBBPF_OPTS(bpf_object_open_opts, open_opts);
__u32 link_info_len = sizeof(struct bpf_link_info);
struct bpf_link_info link_info = {};
bpftool: Add struct_ops support This patch adds struct_ops support to the bpftool. To recap a bit on the recent bpf_struct_ops feature on the kernel side: It currently supports "struct tcp_congestion_ops" to be implemented in bpf. At a high level, bpf_struct_ops is struct_ops map populated with a number of bpf progs. bpf_struct_ops currently supports the "struct tcp_congestion_ops". However, the bpf_struct_ops design is generic enough that other kernel struct ops can be supported in the future. Although struct_ops is map+progs at a high lever, there are differences in details. For example, 1) After registering a struct_ops, the struct_ops is held by the kernel subsystem (e.g. tcp-cc). Thus, there is no need to pin a struct_ops map or its progs in order to keep them around. 2) To iterate all struct_ops in a system, it iterates all maps in type BPF_MAP_TYPE_STRUCT_OPS. BPF_MAP_TYPE_STRUCT_OPS is the current usual filter. In the future, it may need to filter by other struct_ops specific properties. e.g. filter by tcp_congestion_ops or other kernel subsystem ops in the future. 3) struct_ops requires the running kernel having BTF info. That allows more flexibility in handling other kernel structs. e.g. it can always dump the latest bpf_map_info. 4) Also, "struct_ops" command is not intended to repeat all features already provided by "map" or "prog". For example, if there really is a need to pin the struct_ops map, the user can use the "map" cmd to do that. While the first attempt was to reuse parts from map/prog.c, it ended up not a lot to share. The only obvious item is the map_parse_fds() but that still requires modifications to accommodate struct_ops map specific filtering (for the immediate and the future needs). Together with the earlier mentioned differences, it is better to part away from map/prog.c. The initial set of subcmds are, register, unregister, show, and dump. For register, it registers all struct_ops maps that can be found in an obj file. Option can be added in the future to specify a particular struct_ops map. Also, the common bpf_tcp_cc is stateless (e.g. bpf_cubic.c and bpf_dctcp.c). The "reuse map" feature is not implemented in this patch and it can be considered later also. For other subcmds, please see the man doc for details. A sample output of dump: [root@arch-fb-vm1 bpf]# bpftool struct_ops dump name cubic [{ "bpf_map_info": { "type": 26, "id": 64, "key_size": 4, "value_size": 256, "max_entries": 1, "map_flags": 0, "name": "cubic", "ifindex": 0, "btf_vmlinux_value_type_id": 18452, "netns_dev": 0, "netns_ino": 0, "btf_id": 52, "btf_key_type_id": 0, "btf_value_type_id": 0 } },{ "bpf_struct_ops_tcp_congestion_ops": { "refcnt": { "refs": { "counter": 1 } }, "state": "BPF_STRUCT_OPS_STATE_INUSE", "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 0, "init": "void (struct sock *) bictcp_init/prog_id:138", "release": "void (struct sock *) 0", "ssthresh": "u32 (struct sock *) bictcp_recalc_ssthresh/prog_id:141", "cong_avoid": "void (struct sock *, u32, u32) bictcp_cong_avoid/prog_id:140", "set_state": "void (struct sock *, u8) bictcp_state/prog_id:142", "cwnd_event": "void (struct sock *, enum tcp_ca_event) bictcp_cwnd_event/prog_id:139", "in_ack_event": "void (struct sock *, u32) 0", "undo_cwnd": "u32 (struct sock *) tcp_reno_undo_cwnd/prog_id:144", "pkts_acked": "void (struct sock *, const struct ack_sample *) bictcp_acked/prog_id:143", "min_tso_segs": "u32 (struct sock *) 0", "sndbuf_expand": "u32 (struct sock *) 0", "cong_control": "void (struct sock *, const struct rate_sample *) 0", "get_info": "size_t (struct sock *, u32, int *, union tcp_cc_info *) 0", "name": "bpf_cubic", "owner": 0 } } } ] Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20200318171656.129650-1-kafai@fb.com
2020-03-18 17:16:56 +00:00
struct bpf_map_info info = {};
__u32 info_len = sizeof(info);
int nr_errs = 0, nr_maps = 0;
const char *linkdir = NULL;
bpftool: Add struct_ops support This patch adds struct_ops support to the bpftool. To recap a bit on the recent bpf_struct_ops feature on the kernel side: It currently supports "struct tcp_congestion_ops" to be implemented in bpf. At a high level, bpf_struct_ops is struct_ops map populated with a number of bpf progs. bpf_struct_ops currently supports the "struct tcp_congestion_ops". However, the bpf_struct_ops design is generic enough that other kernel struct ops can be supported in the future. Although struct_ops is map+progs at a high lever, there are differences in details. For example, 1) After registering a struct_ops, the struct_ops is held by the kernel subsystem (e.g. tcp-cc). Thus, there is no need to pin a struct_ops map or its progs in order to keep them around. 2) To iterate all struct_ops in a system, it iterates all maps in type BPF_MAP_TYPE_STRUCT_OPS. BPF_MAP_TYPE_STRUCT_OPS is the current usual filter. In the future, it may need to filter by other struct_ops specific properties. e.g. filter by tcp_congestion_ops or other kernel subsystem ops in the future. 3) struct_ops requires the running kernel having BTF info. That allows more flexibility in handling other kernel structs. e.g. it can always dump the latest bpf_map_info. 4) Also, "struct_ops" command is not intended to repeat all features already provided by "map" or "prog". For example, if there really is a need to pin the struct_ops map, the user can use the "map" cmd to do that. While the first attempt was to reuse parts from map/prog.c, it ended up not a lot to share. The only obvious item is the map_parse_fds() but that still requires modifications to accommodate struct_ops map specific filtering (for the immediate and the future needs). Together with the earlier mentioned differences, it is better to part away from map/prog.c. The initial set of subcmds are, register, unregister, show, and dump. For register, it registers all struct_ops maps that can be found in an obj file. Option can be added in the future to specify a particular struct_ops map. Also, the common bpf_tcp_cc is stateless (e.g. bpf_cubic.c and bpf_dctcp.c). The "reuse map" feature is not implemented in this patch and it can be considered later also. For other subcmds, please see the man doc for details. A sample output of dump: [root@arch-fb-vm1 bpf]# bpftool struct_ops dump name cubic [{ "bpf_map_info": { "type": 26, "id": 64, "key_size": 4, "value_size": 256, "max_entries": 1, "map_flags": 0, "name": "cubic", "ifindex": 0, "btf_vmlinux_value_type_id": 18452, "netns_dev": 0, "netns_ino": 0, "btf_id": 52, "btf_key_type_id": 0, "btf_value_type_id": 0 } },{ "bpf_struct_ops_tcp_congestion_ops": { "refcnt": { "refs": { "counter": 1 } }, "state": "BPF_STRUCT_OPS_STATE_INUSE", "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 0, "init": "void (struct sock *) bictcp_init/prog_id:138", "release": "void (struct sock *) 0", "ssthresh": "u32 (struct sock *) bictcp_recalc_ssthresh/prog_id:141", "cong_avoid": "void (struct sock *, u32, u32) bictcp_cong_avoid/prog_id:140", "set_state": "void (struct sock *, u8) bictcp_state/prog_id:142", "cwnd_event": "void (struct sock *, enum tcp_ca_event) bictcp_cwnd_event/prog_id:139", "in_ack_event": "void (struct sock *, u32) 0", "undo_cwnd": "u32 (struct sock *) tcp_reno_undo_cwnd/prog_id:144", "pkts_acked": "void (struct sock *, const struct ack_sample *) bictcp_acked/prog_id:143", "min_tso_segs": "u32 (struct sock *) 0", "sndbuf_expand": "u32 (struct sock *) 0", "cong_control": "void (struct sock *, const struct rate_sample *) 0", "get_info": "size_t (struct sock *, u32, int *, union tcp_cc_info *) 0", "name": "bpf_cubic", "owner": 0 } } } ] Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20200318171656.129650-1-kafai@fb.com
2020-03-18 17:16:56 +00:00
struct bpf_object *obj;
struct bpf_link *link;
struct bpf_map *map;
const char *file;
if (argc != 1 && argc != 2)
bpftool: Add struct_ops support This patch adds struct_ops support to the bpftool. To recap a bit on the recent bpf_struct_ops feature on the kernel side: It currently supports "struct tcp_congestion_ops" to be implemented in bpf. At a high level, bpf_struct_ops is struct_ops map populated with a number of bpf progs. bpf_struct_ops currently supports the "struct tcp_congestion_ops". However, the bpf_struct_ops design is generic enough that other kernel struct ops can be supported in the future. Although struct_ops is map+progs at a high lever, there are differences in details. For example, 1) After registering a struct_ops, the struct_ops is held by the kernel subsystem (e.g. tcp-cc). Thus, there is no need to pin a struct_ops map or its progs in order to keep them around. 2) To iterate all struct_ops in a system, it iterates all maps in type BPF_MAP_TYPE_STRUCT_OPS. BPF_MAP_TYPE_STRUCT_OPS is the current usual filter. In the future, it may need to filter by other struct_ops specific properties. e.g. filter by tcp_congestion_ops or other kernel subsystem ops in the future. 3) struct_ops requires the running kernel having BTF info. That allows more flexibility in handling other kernel structs. e.g. it can always dump the latest bpf_map_info. 4) Also, "struct_ops" command is not intended to repeat all features already provided by "map" or "prog". For example, if there really is a need to pin the struct_ops map, the user can use the "map" cmd to do that. While the first attempt was to reuse parts from map/prog.c, it ended up not a lot to share. The only obvious item is the map_parse_fds() but that still requires modifications to accommodate struct_ops map specific filtering (for the immediate and the future needs). Together with the earlier mentioned differences, it is better to part away from map/prog.c. The initial set of subcmds are, register, unregister, show, and dump. For register, it registers all struct_ops maps that can be found in an obj file. Option can be added in the future to specify a particular struct_ops map. Also, the common bpf_tcp_cc is stateless (e.g. bpf_cubic.c and bpf_dctcp.c). The "reuse map" feature is not implemented in this patch and it can be considered later also. For other subcmds, please see the man doc for details. A sample output of dump: [root@arch-fb-vm1 bpf]# bpftool struct_ops dump name cubic [{ "bpf_map_info": { "type": 26, "id": 64, "key_size": 4, "value_size": 256, "max_entries": 1, "map_flags": 0, "name": "cubic", "ifindex": 0, "btf_vmlinux_value_type_id": 18452, "netns_dev": 0, "netns_ino": 0, "btf_id": 52, "btf_key_type_id": 0, "btf_value_type_id": 0 } },{ "bpf_struct_ops_tcp_congestion_ops": { "refcnt": { "refs": { "counter": 1 } }, "state": "BPF_STRUCT_OPS_STATE_INUSE", "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 0, "init": "void (struct sock *) bictcp_init/prog_id:138", "release": "void (struct sock *) 0", "ssthresh": "u32 (struct sock *) bictcp_recalc_ssthresh/prog_id:141", "cong_avoid": "void (struct sock *, u32, u32) bictcp_cong_avoid/prog_id:140", "set_state": "void (struct sock *, u8) bictcp_state/prog_id:142", "cwnd_event": "void (struct sock *, enum tcp_ca_event) bictcp_cwnd_event/prog_id:139", "in_ack_event": "void (struct sock *, u32) 0", "undo_cwnd": "u32 (struct sock *) tcp_reno_undo_cwnd/prog_id:144", "pkts_acked": "void (struct sock *, const struct ack_sample *) bictcp_acked/prog_id:143", "min_tso_segs": "u32 (struct sock *) 0", "sndbuf_expand": "u32 (struct sock *) 0", "cong_control": "void (struct sock *, const struct rate_sample *) 0", "get_info": "size_t (struct sock *, u32, int *, union tcp_cc_info *) 0", "name": "bpf_cubic", "owner": 0 } } } ] Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20200318171656.129650-1-kafai@fb.com
2020-03-18 17:16:56 +00:00
usage();
file = GET_ARG();
if (argc == 1)
linkdir = GET_ARG();
bpftool: Mount bpffs on provided dir instead of parent dir JIRA: https://issues.redhat.com/browse/RHEL-30773 commit 478a535ae54ad3831371904d93b5dfc403222e17 Author: Sahil Siddiq <icegambit91@gmail.com> Date: Fri Apr 5 00:52:19 2024 +0530 bpftool: Mount bpffs on provided dir instead of parent dir When pinning programs/objects under PATH (eg: during "bpftool prog loadall") the bpffs is mounted on the parent dir of PATH in the following situations: - the given dir exists but it is not bpffs. - the given dir doesn't exist and the parent dir is not bpffs. Mounting on the parent dir can also have the unintentional side- effect of hiding other files located under the parent dir. If the given dir exists but is not bpffs, then the bpffs should be mounted on the given dir and not its parent dir. Similarly, if the given dir doesn't exist and its parent dir is not bpffs, then the given dir should be created and the bpffs should be mounted on this new dir. Fixes: 2a36c26fe3b8 ("bpftool: Support bpffs mountpoint as pin path for prog loadall") Signed-off-by: Sahil Siddiq <icegambit91@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/2da44d24-74ae-a564-1764-afccf395eeec@isovalent.com/T/#t Link: https://lore.kernel.org/bpf/20240404192219.52373-1-icegambit91@gmail.com Closes: https://github.com/libbpf/bpftool/issues/100 Changes since v1: - Split "mount_bpffs_for_pin" into two functions. This is done to improve maintainability and readability. Changes since v2: - mount_bpffs_for_pin: rename to "create_and_mount_bpffs_dir". - mount_bpffs_given_file: rename to "mount_bpffs_given_file". - create_and_mount_bpffs_dir: - introduce "dir_exists" boolean. - remove new dir if "mnt_fs" fails. - improve error handling and error messages. Changes since v3: - Rectify function name. - Improve error messages and formatting. - mount_bpffs_for_file: - Check if dir exists before block_mount check. Changes since v4: - Use strdup instead of strcpy. - create_and_mount_bpffs_dir: - Use S_IRWXU instead of 0700. - Improve error handling and formatting. Signed-off-by: Viktor Malik <vmalik@redhat.com>
2024-10-23 10:51:24 +00:00
if (linkdir && create_and_mount_bpffs_dir(linkdir)) {
p_err("can't mount bpffs for pinning");
return -1;
}
bpftool: Add struct_ops support This patch adds struct_ops support to the bpftool. To recap a bit on the recent bpf_struct_ops feature on the kernel side: It currently supports "struct tcp_congestion_ops" to be implemented in bpf. At a high level, bpf_struct_ops is struct_ops map populated with a number of bpf progs. bpf_struct_ops currently supports the "struct tcp_congestion_ops". However, the bpf_struct_ops design is generic enough that other kernel struct ops can be supported in the future. Although struct_ops is map+progs at a high lever, there are differences in details. For example, 1) After registering a struct_ops, the struct_ops is held by the kernel subsystem (e.g. tcp-cc). Thus, there is no need to pin a struct_ops map or its progs in order to keep them around. 2) To iterate all struct_ops in a system, it iterates all maps in type BPF_MAP_TYPE_STRUCT_OPS. BPF_MAP_TYPE_STRUCT_OPS is the current usual filter. In the future, it may need to filter by other struct_ops specific properties. e.g. filter by tcp_congestion_ops or other kernel subsystem ops in the future. 3) struct_ops requires the running kernel having BTF info. That allows more flexibility in handling other kernel structs. e.g. it can always dump the latest bpf_map_info. 4) Also, "struct_ops" command is not intended to repeat all features already provided by "map" or "prog". For example, if there really is a need to pin the struct_ops map, the user can use the "map" cmd to do that. While the first attempt was to reuse parts from map/prog.c, it ended up not a lot to share. The only obvious item is the map_parse_fds() but that still requires modifications to accommodate struct_ops map specific filtering (for the immediate and the future needs). Together with the earlier mentioned differences, it is better to part away from map/prog.c. The initial set of subcmds are, register, unregister, show, and dump. For register, it registers all struct_ops maps that can be found in an obj file. Option can be added in the future to specify a particular struct_ops map. Also, the common bpf_tcp_cc is stateless (e.g. bpf_cubic.c and bpf_dctcp.c). The "reuse map" feature is not implemented in this patch and it can be considered later also. For other subcmds, please see the man doc for details. A sample output of dump: [root@arch-fb-vm1 bpf]# bpftool struct_ops dump name cubic [{ "bpf_map_info": { "type": 26, "id": 64, "key_size": 4, "value_size": 256, "max_entries": 1, "map_flags": 0, "name": "cubic", "ifindex": 0, "btf_vmlinux_value_type_id": 18452, "netns_dev": 0, "netns_ino": 0, "btf_id": 52, "btf_key_type_id": 0, "btf_value_type_id": 0 } },{ "bpf_struct_ops_tcp_congestion_ops": { "refcnt": { "refs": { "counter": 1 } }, "state": "BPF_STRUCT_OPS_STATE_INUSE", "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 0, "init": "void (struct sock *) bictcp_init/prog_id:138", "release": "void (struct sock *) 0", "ssthresh": "u32 (struct sock *) bictcp_recalc_ssthresh/prog_id:141", "cong_avoid": "void (struct sock *, u32, u32) bictcp_cong_avoid/prog_id:140", "set_state": "void (struct sock *, u8) bictcp_state/prog_id:142", "cwnd_event": "void (struct sock *, enum tcp_ca_event) bictcp_cwnd_event/prog_id:139", "in_ack_event": "void (struct sock *, u32) 0", "undo_cwnd": "u32 (struct sock *) tcp_reno_undo_cwnd/prog_id:144", "pkts_acked": "void (struct sock *, const struct ack_sample *) bictcp_acked/prog_id:143", "min_tso_segs": "u32 (struct sock *) 0", "sndbuf_expand": "u32 (struct sock *) 0", "cong_control": "void (struct sock *, const struct rate_sample *) 0", "get_info": "size_t (struct sock *, u32, int *, union tcp_cc_info *) 0", "name": "bpf_cubic", "owner": 0 } } } ] Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20200318171656.129650-1-kafai@fb.com
2020-03-18 17:16:56 +00:00
if (verifier_logs)
/* log_level1 + log_level2 + stats, but not stable UAPI */
open_opts.kernel_log_level = 1 + 2 + 4;
obj = bpf_object__open_file(file, &open_opts);
if (!obj)
bpftool: Add struct_ops support This patch adds struct_ops support to the bpftool. To recap a bit on the recent bpf_struct_ops feature on the kernel side: It currently supports "struct tcp_congestion_ops" to be implemented in bpf. At a high level, bpf_struct_ops is struct_ops map populated with a number of bpf progs. bpf_struct_ops currently supports the "struct tcp_congestion_ops". However, the bpf_struct_ops design is generic enough that other kernel struct ops can be supported in the future. Although struct_ops is map+progs at a high lever, there are differences in details. For example, 1) After registering a struct_ops, the struct_ops is held by the kernel subsystem (e.g. tcp-cc). Thus, there is no need to pin a struct_ops map or its progs in order to keep them around. 2) To iterate all struct_ops in a system, it iterates all maps in type BPF_MAP_TYPE_STRUCT_OPS. BPF_MAP_TYPE_STRUCT_OPS is the current usual filter. In the future, it may need to filter by other struct_ops specific properties. e.g. filter by tcp_congestion_ops or other kernel subsystem ops in the future. 3) struct_ops requires the running kernel having BTF info. That allows more flexibility in handling other kernel structs. e.g. it can always dump the latest bpf_map_info. 4) Also, "struct_ops" command is not intended to repeat all features already provided by "map" or "prog". For example, if there really is a need to pin the struct_ops map, the user can use the "map" cmd to do that. While the first attempt was to reuse parts from map/prog.c, it ended up not a lot to share. The only obvious item is the map_parse_fds() but that still requires modifications to accommodate struct_ops map specific filtering (for the immediate and the future needs). Together with the earlier mentioned differences, it is better to part away from map/prog.c. The initial set of subcmds are, register, unregister, show, and dump. For register, it registers all struct_ops maps that can be found in an obj file. Option can be added in the future to specify a particular struct_ops map. Also, the common bpf_tcp_cc is stateless (e.g. bpf_cubic.c and bpf_dctcp.c). The "reuse map" feature is not implemented in this patch and it can be considered later also. For other subcmds, please see the man doc for details. A sample output of dump: [root@arch-fb-vm1 bpf]# bpftool struct_ops dump name cubic [{ "bpf_map_info": { "type": 26, "id": 64, "key_size": 4, "value_size": 256, "max_entries": 1, "map_flags": 0, "name": "cubic", "ifindex": 0, "btf_vmlinux_value_type_id": 18452, "netns_dev": 0, "netns_ino": 0, "btf_id": 52, "btf_key_type_id": 0, "btf_value_type_id": 0 } },{ "bpf_struct_ops_tcp_congestion_ops": { "refcnt": { "refs": { "counter": 1 } }, "state": "BPF_STRUCT_OPS_STATE_INUSE", "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 0, "init": "void (struct sock *) bictcp_init/prog_id:138", "release": "void (struct sock *) 0", "ssthresh": "u32 (struct sock *) bictcp_recalc_ssthresh/prog_id:141", "cong_avoid": "void (struct sock *, u32, u32) bictcp_cong_avoid/prog_id:140", "set_state": "void (struct sock *, u8) bictcp_state/prog_id:142", "cwnd_event": "void (struct sock *, enum tcp_ca_event) bictcp_cwnd_event/prog_id:139", "in_ack_event": "void (struct sock *, u32) 0", "undo_cwnd": "u32 (struct sock *) tcp_reno_undo_cwnd/prog_id:144", "pkts_acked": "void (struct sock *, const struct ack_sample *) bictcp_acked/prog_id:143", "min_tso_segs": "u32 (struct sock *) 0", "sndbuf_expand": "u32 (struct sock *) 0", "cong_control": "void (struct sock *, const struct rate_sample *) 0", "get_info": "size_t (struct sock *, u32, int *, union tcp_cc_info *) 0", "name": "bpf_cubic", "owner": 0 } } } ] Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20200318171656.129650-1-kafai@fb.com
2020-03-18 17:16:56 +00:00
return -1;
set_max_rlimit();
if (bpf_object__load(obj)) {
bpftool: Add struct_ops support This patch adds struct_ops support to the bpftool. To recap a bit on the recent bpf_struct_ops feature on the kernel side: It currently supports "struct tcp_congestion_ops" to be implemented in bpf. At a high level, bpf_struct_ops is struct_ops map populated with a number of bpf progs. bpf_struct_ops currently supports the "struct tcp_congestion_ops". However, the bpf_struct_ops design is generic enough that other kernel struct ops can be supported in the future. Although struct_ops is map+progs at a high lever, there are differences in details. For example, 1) After registering a struct_ops, the struct_ops is held by the kernel subsystem (e.g. tcp-cc). Thus, there is no need to pin a struct_ops map or its progs in order to keep them around. 2) To iterate all struct_ops in a system, it iterates all maps in type BPF_MAP_TYPE_STRUCT_OPS. BPF_MAP_TYPE_STRUCT_OPS is the current usual filter. In the future, it may need to filter by other struct_ops specific properties. e.g. filter by tcp_congestion_ops or other kernel subsystem ops in the future. 3) struct_ops requires the running kernel having BTF info. That allows more flexibility in handling other kernel structs. e.g. it can always dump the latest bpf_map_info. 4) Also, "struct_ops" command is not intended to repeat all features already provided by "map" or "prog". For example, if there really is a need to pin the struct_ops map, the user can use the "map" cmd to do that. While the first attempt was to reuse parts from map/prog.c, it ended up not a lot to share. The only obvious item is the map_parse_fds() but that still requires modifications to accommodate struct_ops map specific filtering (for the immediate and the future needs). Together with the earlier mentioned differences, it is better to part away from map/prog.c. The initial set of subcmds are, register, unregister, show, and dump. For register, it registers all struct_ops maps that can be found in an obj file. Option can be added in the future to specify a particular struct_ops map. Also, the common bpf_tcp_cc is stateless (e.g. bpf_cubic.c and bpf_dctcp.c). The "reuse map" feature is not implemented in this patch and it can be considered later also. For other subcmds, please see the man doc for details. A sample output of dump: [root@arch-fb-vm1 bpf]# bpftool struct_ops dump name cubic [{ "bpf_map_info": { "type": 26, "id": 64, "key_size": 4, "value_size": 256, "max_entries": 1, "map_flags": 0, "name": "cubic", "ifindex": 0, "btf_vmlinux_value_type_id": 18452, "netns_dev": 0, "netns_ino": 0, "btf_id": 52, "btf_key_type_id": 0, "btf_value_type_id": 0 } },{ "bpf_struct_ops_tcp_congestion_ops": { "refcnt": { "refs": { "counter": 1 } }, "state": "BPF_STRUCT_OPS_STATE_INUSE", "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 0, "init": "void (struct sock *) bictcp_init/prog_id:138", "release": "void (struct sock *) 0", "ssthresh": "u32 (struct sock *) bictcp_recalc_ssthresh/prog_id:141", "cong_avoid": "void (struct sock *, u32, u32) bictcp_cong_avoid/prog_id:140", "set_state": "void (struct sock *, u8) bictcp_state/prog_id:142", "cwnd_event": "void (struct sock *, enum tcp_ca_event) bictcp_cwnd_event/prog_id:139", "in_ack_event": "void (struct sock *, u32) 0", "undo_cwnd": "u32 (struct sock *) tcp_reno_undo_cwnd/prog_id:144", "pkts_acked": "void (struct sock *, const struct ack_sample *) bictcp_acked/prog_id:143", "min_tso_segs": "u32 (struct sock *) 0", "sndbuf_expand": "u32 (struct sock *) 0", "cong_control": "void (struct sock *, const struct rate_sample *) 0", "get_info": "size_t (struct sock *, u32, int *, union tcp_cc_info *) 0", "name": "bpf_cubic", "owner": 0 } } } ] Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20200318171656.129650-1-kafai@fb.com
2020-03-18 17:16:56 +00:00
bpf_object__close(obj);
return -1;
}
bpf_object__for_each_map(map, obj) {
if (bpf_map__type(map) != BPF_MAP_TYPE_STRUCT_OPS)
bpftool: Add struct_ops support This patch adds struct_ops support to the bpftool. To recap a bit on the recent bpf_struct_ops feature on the kernel side: It currently supports "struct tcp_congestion_ops" to be implemented in bpf. At a high level, bpf_struct_ops is struct_ops map populated with a number of bpf progs. bpf_struct_ops currently supports the "struct tcp_congestion_ops". However, the bpf_struct_ops design is generic enough that other kernel struct ops can be supported in the future. Although struct_ops is map+progs at a high lever, there are differences in details. For example, 1) After registering a struct_ops, the struct_ops is held by the kernel subsystem (e.g. tcp-cc). Thus, there is no need to pin a struct_ops map or its progs in order to keep them around. 2) To iterate all struct_ops in a system, it iterates all maps in type BPF_MAP_TYPE_STRUCT_OPS. BPF_MAP_TYPE_STRUCT_OPS is the current usual filter. In the future, it may need to filter by other struct_ops specific properties. e.g. filter by tcp_congestion_ops or other kernel subsystem ops in the future. 3) struct_ops requires the running kernel having BTF info. That allows more flexibility in handling other kernel structs. e.g. it can always dump the latest bpf_map_info. 4) Also, "struct_ops" command is not intended to repeat all features already provided by "map" or "prog". For example, if there really is a need to pin the struct_ops map, the user can use the "map" cmd to do that. While the first attempt was to reuse parts from map/prog.c, it ended up not a lot to share. The only obvious item is the map_parse_fds() but that still requires modifications to accommodate struct_ops map specific filtering (for the immediate and the future needs). Together with the earlier mentioned differences, it is better to part away from map/prog.c. The initial set of subcmds are, register, unregister, show, and dump. For register, it registers all struct_ops maps that can be found in an obj file. Option can be added in the future to specify a particular struct_ops map. Also, the common bpf_tcp_cc is stateless (e.g. bpf_cubic.c and bpf_dctcp.c). The "reuse map" feature is not implemented in this patch and it can be considered later also. For other subcmds, please see the man doc for details. A sample output of dump: [root@arch-fb-vm1 bpf]# bpftool struct_ops dump name cubic [{ "bpf_map_info": { "type": 26, "id": 64, "key_size": 4, "value_size": 256, "max_entries": 1, "map_flags": 0, "name": "cubic", "ifindex": 0, "btf_vmlinux_value_type_id": 18452, "netns_dev": 0, "netns_ino": 0, "btf_id": 52, "btf_key_type_id": 0, "btf_value_type_id": 0 } },{ "bpf_struct_ops_tcp_congestion_ops": { "refcnt": { "refs": { "counter": 1 } }, "state": "BPF_STRUCT_OPS_STATE_INUSE", "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 0, "init": "void (struct sock *) bictcp_init/prog_id:138", "release": "void (struct sock *) 0", "ssthresh": "u32 (struct sock *) bictcp_recalc_ssthresh/prog_id:141", "cong_avoid": "void (struct sock *, u32, u32) bictcp_cong_avoid/prog_id:140", "set_state": "void (struct sock *, u8) bictcp_state/prog_id:142", "cwnd_event": "void (struct sock *, enum tcp_ca_event) bictcp_cwnd_event/prog_id:139", "in_ack_event": "void (struct sock *, u32) 0", "undo_cwnd": "u32 (struct sock *) tcp_reno_undo_cwnd/prog_id:144", "pkts_acked": "void (struct sock *, const struct ack_sample *) bictcp_acked/prog_id:143", "min_tso_segs": "u32 (struct sock *) 0", "sndbuf_expand": "u32 (struct sock *) 0", "cong_control": "void (struct sock *, const struct rate_sample *) 0", "get_info": "size_t (struct sock *, u32, int *, union tcp_cc_info *) 0", "name": "bpf_cubic", "owner": 0 } } } ] Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20200318171656.129650-1-kafai@fb.com
2020-03-18 17:16:56 +00:00
continue;
link = bpf_map__attach_struct_ops(map);
if (!link) {
bpftool: Add struct_ops support This patch adds struct_ops support to the bpftool. To recap a bit on the recent bpf_struct_ops feature on the kernel side: It currently supports "struct tcp_congestion_ops" to be implemented in bpf. At a high level, bpf_struct_ops is struct_ops map populated with a number of bpf progs. bpf_struct_ops currently supports the "struct tcp_congestion_ops". However, the bpf_struct_ops design is generic enough that other kernel struct ops can be supported in the future. Although struct_ops is map+progs at a high lever, there are differences in details. For example, 1) After registering a struct_ops, the struct_ops is held by the kernel subsystem (e.g. tcp-cc). Thus, there is no need to pin a struct_ops map or its progs in order to keep them around. 2) To iterate all struct_ops in a system, it iterates all maps in type BPF_MAP_TYPE_STRUCT_OPS. BPF_MAP_TYPE_STRUCT_OPS is the current usual filter. In the future, it may need to filter by other struct_ops specific properties. e.g. filter by tcp_congestion_ops or other kernel subsystem ops in the future. 3) struct_ops requires the running kernel having BTF info. That allows more flexibility in handling other kernel structs. e.g. it can always dump the latest bpf_map_info. 4) Also, "struct_ops" command is not intended to repeat all features already provided by "map" or "prog". For example, if there really is a need to pin the struct_ops map, the user can use the "map" cmd to do that. While the first attempt was to reuse parts from map/prog.c, it ended up not a lot to share. The only obvious item is the map_parse_fds() but that still requires modifications to accommodate struct_ops map specific filtering (for the immediate and the future needs). Together with the earlier mentioned differences, it is better to part away from map/prog.c. The initial set of subcmds are, register, unregister, show, and dump. For register, it registers all struct_ops maps that can be found in an obj file. Option can be added in the future to specify a particular struct_ops map. Also, the common bpf_tcp_cc is stateless (e.g. bpf_cubic.c and bpf_dctcp.c). The "reuse map" feature is not implemented in this patch and it can be considered later also. For other subcmds, please see the man doc for details. A sample output of dump: [root@arch-fb-vm1 bpf]# bpftool struct_ops dump name cubic [{ "bpf_map_info": { "type": 26, "id": 64, "key_size": 4, "value_size": 256, "max_entries": 1, "map_flags": 0, "name": "cubic", "ifindex": 0, "btf_vmlinux_value_type_id": 18452, "netns_dev": 0, "netns_ino": 0, "btf_id": 52, "btf_key_type_id": 0, "btf_value_type_id": 0 } },{ "bpf_struct_ops_tcp_congestion_ops": { "refcnt": { "refs": { "counter": 1 } }, "state": "BPF_STRUCT_OPS_STATE_INUSE", "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 0, "init": "void (struct sock *) bictcp_init/prog_id:138", "release": "void (struct sock *) 0", "ssthresh": "u32 (struct sock *) bictcp_recalc_ssthresh/prog_id:141", "cong_avoid": "void (struct sock *, u32, u32) bictcp_cong_avoid/prog_id:140", "set_state": "void (struct sock *, u8) bictcp_state/prog_id:142", "cwnd_event": "void (struct sock *, enum tcp_ca_event) bictcp_cwnd_event/prog_id:139", "in_ack_event": "void (struct sock *, u32) 0", "undo_cwnd": "u32 (struct sock *) tcp_reno_undo_cwnd/prog_id:144", "pkts_acked": "void (struct sock *, const struct ack_sample *) bictcp_acked/prog_id:143", "min_tso_segs": "u32 (struct sock *) 0", "sndbuf_expand": "u32 (struct sock *) 0", "cong_control": "void (struct sock *, const struct rate_sample *) 0", "get_info": "size_t (struct sock *, u32, int *, union tcp_cc_info *) 0", "name": "bpf_cubic", "owner": 0 } } } ] Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20200318171656.129650-1-kafai@fb.com
2020-03-18 17:16:56 +00:00
p_err("can't register struct_ops %s: %s",
bpf_map__name(map), strerror(errno));
bpftool: Add struct_ops support This patch adds struct_ops support to the bpftool. To recap a bit on the recent bpf_struct_ops feature on the kernel side: It currently supports "struct tcp_congestion_ops" to be implemented in bpf. At a high level, bpf_struct_ops is struct_ops map populated with a number of bpf progs. bpf_struct_ops currently supports the "struct tcp_congestion_ops". However, the bpf_struct_ops design is generic enough that other kernel struct ops can be supported in the future. Although struct_ops is map+progs at a high lever, there are differences in details. For example, 1) After registering a struct_ops, the struct_ops is held by the kernel subsystem (e.g. tcp-cc). Thus, there is no need to pin a struct_ops map or its progs in order to keep them around. 2) To iterate all struct_ops in a system, it iterates all maps in type BPF_MAP_TYPE_STRUCT_OPS. BPF_MAP_TYPE_STRUCT_OPS is the current usual filter. In the future, it may need to filter by other struct_ops specific properties. e.g. filter by tcp_congestion_ops or other kernel subsystem ops in the future. 3) struct_ops requires the running kernel having BTF info. That allows more flexibility in handling other kernel structs. e.g. it can always dump the latest bpf_map_info. 4) Also, "struct_ops" command is not intended to repeat all features already provided by "map" or "prog". For example, if there really is a need to pin the struct_ops map, the user can use the "map" cmd to do that. While the first attempt was to reuse parts from map/prog.c, it ended up not a lot to share. The only obvious item is the map_parse_fds() but that still requires modifications to accommodate struct_ops map specific filtering (for the immediate and the future needs). Together with the earlier mentioned differences, it is better to part away from map/prog.c. The initial set of subcmds are, register, unregister, show, and dump. For register, it registers all struct_ops maps that can be found in an obj file. Option can be added in the future to specify a particular struct_ops map. Also, the common bpf_tcp_cc is stateless (e.g. bpf_cubic.c and bpf_dctcp.c). The "reuse map" feature is not implemented in this patch and it can be considered later also. For other subcmds, please see the man doc for details. A sample output of dump: [root@arch-fb-vm1 bpf]# bpftool struct_ops dump name cubic [{ "bpf_map_info": { "type": 26, "id": 64, "key_size": 4, "value_size": 256, "max_entries": 1, "map_flags": 0, "name": "cubic", "ifindex": 0, "btf_vmlinux_value_type_id": 18452, "netns_dev": 0, "netns_ino": 0, "btf_id": 52, "btf_key_type_id": 0, "btf_value_type_id": 0 } },{ "bpf_struct_ops_tcp_congestion_ops": { "refcnt": { "refs": { "counter": 1 } }, "state": "BPF_STRUCT_OPS_STATE_INUSE", "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 0, "init": "void (struct sock *) bictcp_init/prog_id:138", "release": "void (struct sock *) 0", "ssthresh": "u32 (struct sock *) bictcp_recalc_ssthresh/prog_id:141", "cong_avoid": "void (struct sock *, u32, u32) bictcp_cong_avoid/prog_id:140", "set_state": "void (struct sock *, u8) bictcp_state/prog_id:142", "cwnd_event": "void (struct sock *, enum tcp_ca_event) bictcp_cwnd_event/prog_id:139", "in_ack_event": "void (struct sock *, u32) 0", "undo_cwnd": "u32 (struct sock *) tcp_reno_undo_cwnd/prog_id:144", "pkts_acked": "void (struct sock *, const struct ack_sample *) bictcp_acked/prog_id:143", "min_tso_segs": "u32 (struct sock *) 0", "sndbuf_expand": "u32 (struct sock *) 0", "cong_control": "void (struct sock *, const struct rate_sample *) 0", "get_info": "size_t (struct sock *, u32, int *, union tcp_cc_info *) 0", "name": "bpf_cubic", "owner": 0 } } } ] Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20200318171656.129650-1-kafai@fb.com
2020-03-18 17:16:56 +00:00
nr_errs++;
continue;
}
nr_maps++;
if (bpf_map_get_info_by_fd(bpf_map__fd(map), &info,
&info_len)) {
bpftool: Add struct_ops support This patch adds struct_ops support to the bpftool. To recap a bit on the recent bpf_struct_ops feature on the kernel side: It currently supports "struct tcp_congestion_ops" to be implemented in bpf. At a high level, bpf_struct_ops is struct_ops map populated with a number of bpf progs. bpf_struct_ops currently supports the "struct tcp_congestion_ops". However, the bpf_struct_ops design is generic enough that other kernel struct ops can be supported in the future. Although struct_ops is map+progs at a high lever, there are differences in details. For example, 1) After registering a struct_ops, the struct_ops is held by the kernel subsystem (e.g. tcp-cc). Thus, there is no need to pin a struct_ops map or its progs in order to keep them around. 2) To iterate all struct_ops in a system, it iterates all maps in type BPF_MAP_TYPE_STRUCT_OPS. BPF_MAP_TYPE_STRUCT_OPS is the current usual filter. In the future, it may need to filter by other struct_ops specific properties. e.g. filter by tcp_congestion_ops or other kernel subsystem ops in the future. 3) struct_ops requires the running kernel having BTF info. That allows more flexibility in handling other kernel structs. e.g. it can always dump the latest bpf_map_info. 4) Also, "struct_ops" command is not intended to repeat all features already provided by "map" or "prog". For example, if there really is a need to pin the struct_ops map, the user can use the "map" cmd to do that. While the first attempt was to reuse parts from map/prog.c, it ended up not a lot to share. The only obvious item is the map_parse_fds() but that still requires modifications to accommodate struct_ops map specific filtering (for the immediate and the future needs). Together with the earlier mentioned differences, it is better to part away from map/prog.c. The initial set of subcmds are, register, unregister, show, and dump. For register, it registers all struct_ops maps that can be found in an obj file. Option can be added in the future to specify a particular struct_ops map. Also, the common bpf_tcp_cc is stateless (e.g. bpf_cubic.c and bpf_dctcp.c). The "reuse map" feature is not implemented in this patch and it can be considered later also. For other subcmds, please see the man doc for details. A sample output of dump: [root@arch-fb-vm1 bpf]# bpftool struct_ops dump name cubic [{ "bpf_map_info": { "type": 26, "id": 64, "key_size": 4, "value_size": 256, "max_entries": 1, "map_flags": 0, "name": "cubic", "ifindex": 0, "btf_vmlinux_value_type_id": 18452, "netns_dev": 0, "netns_ino": 0, "btf_id": 52, "btf_key_type_id": 0, "btf_value_type_id": 0 } },{ "bpf_struct_ops_tcp_congestion_ops": { "refcnt": { "refs": { "counter": 1 } }, "state": "BPF_STRUCT_OPS_STATE_INUSE", "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 0, "init": "void (struct sock *) bictcp_init/prog_id:138", "release": "void (struct sock *) 0", "ssthresh": "u32 (struct sock *) bictcp_recalc_ssthresh/prog_id:141", "cong_avoid": "void (struct sock *, u32, u32) bictcp_cong_avoid/prog_id:140", "set_state": "void (struct sock *, u8) bictcp_state/prog_id:142", "cwnd_event": "void (struct sock *, enum tcp_ca_event) bictcp_cwnd_event/prog_id:139", "in_ack_event": "void (struct sock *, u32) 0", "undo_cwnd": "u32 (struct sock *) tcp_reno_undo_cwnd/prog_id:144", "pkts_acked": "void (struct sock *, const struct ack_sample *) bictcp_acked/prog_id:143", "min_tso_segs": "u32 (struct sock *) 0", "sndbuf_expand": "u32 (struct sock *) 0", "cong_control": "void (struct sock *, const struct rate_sample *) 0", "get_info": "size_t (struct sock *, u32, int *, union tcp_cc_info *) 0", "name": "bpf_cubic", "owner": 0 } } } ] Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20200318171656.129650-1-kafai@fb.com
2020-03-18 17:16:56 +00:00
/* Not p_err. The struct_ops was attached
* successfully.
*/
p_info("Registered %s but can't find id: %s",
bpf_map__name(map), strerror(errno));
goto clean_link;
}
if (!(bpf_map__map_flags(map) & BPF_F_LINK)) {
p_info("Registered %s %s id %u",
get_kern_struct_ops_name(&info),
info.name,
info.id);
goto clean_link;
}
if (bpf_link_get_info_by_fd(bpf_link__fd(link),
&link_info,
&link_info_len)) {
p_err("Registered %s but can't find link id: %s",
bpf_map__name(map), strerror(errno));
nr_errs++;
goto clean_link;
}
if (linkdir && pin_link(link, linkdir, info.name)) {
p_err("can't pin link %u for %s: %s",
link_info.id, info.name,
strerror(errno));
nr_errs++;
goto clean_link;
}
p_info("Registered %s %s map id %u link id %u",
get_kern_struct_ops_name(&info),
info.name, info.id, link_info.id);
clean_link:
bpf_link__disconnect(link);
bpf_link__destroy(link);
bpftool: Add struct_ops support This patch adds struct_ops support to the bpftool. To recap a bit on the recent bpf_struct_ops feature on the kernel side: It currently supports "struct tcp_congestion_ops" to be implemented in bpf. At a high level, bpf_struct_ops is struct_ops map populated with a number of bpf progs. bpf_struct_ops currently supports the "struct tcp_congestion_ops". However, the bpf_struct_ops design is generic enough that other kernel struct ops can be supported in the future. Although struct_ops is map+progs at a high lever, there are differences in details. For example, 1) After registering a struct_ops, the struct_ops is held by the kernel subsystem (e.g. tcp-cc). Thus, there is no need to pin a struct_ops map or its progs in order to keep them around. 2) To iterate all struct_ops in a system, it iterates all maps in type BPF_MAP_TYPE_STRUCT_OPS. BPF_MAP_TYPE_STRUCT_OPS is the current usual filter. In the future, it may need to filter by other struct_ops specific properties. e.g. filter by tcp_congestion_ops or other kernel subsystem ops in the future. 3) struct_ops requires the running kernel having BTF info. That allows more flexibility in handling other kernel structs. e.g. it can always dump the latest bpf_map_info. 4) Also, "struct_ops" command is not intended to repeat all features already provided by "map" or "prog". For example, if there really is a need to pin the struct_ops map, the user can use the "map" cmd to do that. While the first attempt was to reuse parts from map/prog.c, it ended up not a lot to share. The only obvious item is the map_parse_fds() but that still requires modifications to accommodate struct_ops map specific filtering (for the immediate and the future needs). Together with the earlier mentioned differences, it is better to part away from map/prog.c. The initial set of subcmds are, register, unregister, show, and dump. For register, it registers all struct_ops maps that can be found in an obj file. Option can be added in the future to specify a particular struct_ops map. Also, the common bpf_tcp_cc is stateless (e.g. bpf_cubic.c and bpf_dctcp.c). The "reuse map" feature is not implemented in this patch and it can be considered later also. For other subcmds, please see the man doc for details. A sample output of dump: [root@arch-fb-vm1 bpf]# bpftool struct_ops dump name cubic [{ "bpf_map_info": { "type": 26, "id": 64, "key_size": 4, "value_size": 256, "max_entries": 1, "map_flags": 0, "name": "cubic", "ifindex": 0, "btf_vmlinux_value_type_id": 18452, "netns_dev": 0, "netns_ino": 0, "btf_id": 52, "btf_key_type_id": 0, "btf_value_type_id": 0 } },{ "bpf_struct_ops_tcp_congestion_ops": { "refcnt": { "refs": { "counter": 1 } }, "state": "BPF_STRUCT_OPS_STATE_INUSE", "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 0, "init": "void (struct sock *) bictcp_init/prog_id:138", "release": "void (struct sock *) 0", "ssthresh": "u32 (struct sock *) bictcp_recalc_ssthresh/prog_id:141", "cong_avoid": "void (struct sock *, u32, u32) bictcp_cong_avoid/prog_id:140", "set_state": "void (struct sock *, u8) bictcp_state/prog_id:142", "cwnd_event": "void (struct sock *, enum tcp_ca_event) bictcp_cwnd_event/prog_id:139", "in_ack_event": "void (struct sock *, u32) 0", "undo_cwnd": "u32 (struct sock *) tcp_reno_undo_cwnd/prog_id:144", "pkts_acked": "void (struct sock *, const struct ack_sample *) bictcp_acked/prog_id:143", "min_tso_segs": "u32 (struct sock *) 0", "sndbuf_expand": "u32 (struct sock *) 0", "cong_control": "void (struct sock *, const struct rate_sample *) 0", "get_info": "size_t (struct sock *, u32, int *, union tcp_cc_info *) 0", "name": "bpf_cubic", "owner": 0 } } } ] Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20200318171656.129650-1-kafai@fb.com
2020-03-18 17:16:56 +00:00
}
bpf_object__close(obj);
if (nr_errs)
return -1;
if (!nr_maps) {
p_err("no struct_ops found in %s", file);
return -1;
}
if (json_output)
jsonw_null(json_wtr);
return 0;
}
static int do_help(int argc, char **argv)
{
if (json_output) {
jsonw_null(json_wtr);
return 0;
}
fprintf(stderr,
"Usage: %1$s %2$s { show | list } [STRUCT_OPS_MAP]\n"
" %1$s %2$s dump [STRUCT_OPS_MAP]\n"
" %1$s %2$s register OBJ [LINK_DIR]\n"
" %1$s %2$s unregister STRUCT_OPS_MAP\n"
" %1$s %2$s help\n"
bpftool: Add struct_ops support This patch adds struct_ops support to the bpftool. To recap a bit on the recent bpf_struct_ops feature on the kernel side: It currently supports "struct tcp_congestion_ops" to be implemented in bpf. At a high level, bpf_struct_ops is struct_ops map populated with a number of bpf progs. bpf_struct_ops currently supports the "struct tcp_congestion_ops". However, the bpf_struct_ops design is generic enough that other kernel struct ops can be supported in the future. Although struct_ops is map+progs at a high lever, there are differences in details. For example, 1) After registering a struct_ops, the struct_ops is held by the kernel subsystem (e.g. tcp-cc). Thus, there is no need to pin a struct_ops map or its progs in order to keep them around. 2) To iterate all struct_ops in a system, it iterates all maps in type BPF_MAP_TYPE_STRUCT_OPS. BPF_MAP_TYPE_STRUCT_OPS is the current usual filter. In the future, it may need to filter by other struct_ops specific properties. e.g. filter by tcp_congestion_ops or other kernel subsystem ops in the future. 3) struct_ops requires the running kernel having BTF info. That allows more flexibility in handling other kernel structs. e.g. it can always dump the latest bpf_map_info. 4) Also, "struct_ops" command is not intended to repeat all features already provided by "map" or "prog". For example, if there really is a need to pin the struct_ops map, the user can use the "map" cmd to do that. While the first attempt was to reuse parts from map/prog.c, it ended up not a lot to share. The only obvious item is the map_parse_fds() but that still requires modifications to accommodate struct_ops map specific filtering (for the immediate and the future needs). Together with the earlier mentioned differences, it is better to part away from map/prog.c. The initial set of subcmds are, register, unregister, show, and dump. For register, it registers all struct_ops maps that can be found in an obj file. Option can be added in the future to specify a particular struct_ops map. Also, the common bpf_tcp_cc is stateless (e.g. bpf_cubic.c and bpf_dctcp.c). The "reuse map" feature is not implemented in this patch and it can be considered later also. For other subcmds, please see the man doc for details. A sample output of dump: [root@arch-fb-vm1 bpf]# bpftool struct_ops dump name cubic [{ "bpf_map_info": { "type": 26, "id": 64, "key_size": 4, "value_size": 256, "max_entries": 1, "map_flags": 0, "name": "cubic", "ifindex": 0, "btf_vmlinux_value_type_id": 18452, "netns_dev": 0, "netns_ino": 0, "btf_id": 52, "btf_key_type_id": 0, "btf_value_type_id": 0 } },{ "bpf_struct_ops_tcp_congestion_ops": { "refcnt": { "refs": { "counter": 1 } }, "state": "BPF_STRUCT_OPS_STATE_INUSE", "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 0, "init": "void (struct sock *) bictcp_init/prog_id:138", "release": "void (struct sock *) 0", "ssthresh": "u32 (struct sock *) bictcp_recalc_ssthresh/prog_id:141", "cong_avoid": "void (struct sock *, u32, u32) bictcp_cong_avoid/prog_id:140", "set_state": "void (struct sock *, u8) bictcp_state/prog_id:142", "cwnd_event": "void (struct sock *, enum tcp_ca_event) bictcp_cwnd_event/prog_id:139", "in_ack_event": "void (struct sock *, u32) 0", "undo_cwnd": "u32 (struct sock *) tcp_reno_undo_cwnd/prog_id:144", "pkts_acked": "void (struct sock *, const struct ack_sample *) bictcp_acked/prog_id:143", "min_tso_segs": "u32 (struct sock *) 0", "sndbuf_expand": "u32 (struct sock *) 0", "cong_control": "void (struct sock *, const struct rate_sample *) 0", "get_info": "size_t (struct sock *, u32, int *, union tcp_cc_info *) 0", "name": "bpf_cubic", "owner": 0 } } } ] Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20200318171656.129650-1-kafai@fb.com
2020-03-18 17:16:56 +00:00
"\n"
" STRUCT_OPS_MAP := [ id STRUCT_OPS_MAP_ID | name STRUCT_OPS_MAP_NAME ]\n"
tools: bpftool: Update and synchronise option list in doc and help msg Bugzilla: http://bugzilla.redhat.com/2041365 commit c07ba629df97b796ca7bbdfbf4748266ead27745 Author: Quentin Monnet <quentin@isovalent.com> Date: Fri Jul 30 22:54:32 2021 +0100 tools: bpftool: Update and synchronise option list in doc and help msg All bpftool commands support the options for JSON output and debug from libbpf. In addition, some commands support additional options corresponding to specific use cases. The list of options described in the man pages for the different commands are not always accurate. The messages for interactive help are mostly limited to HELP_SPEC_OPTIONS, and are even less representative of the actual set of options supported for the commands. Let's update the lists: - HELP_SPEC_OPTIONS is modified to contain the "default" options (JSON and debug), and to be extensible (no ending curly bracket). - All commands use HELP_SPEC_OPTIONS in their help message, and then complete the list with their specific options. - The lists of options in the man pages are updated. - The formatting of the list for bpftool.rst is adjusted to match formatting for the other man pages. This is for consistency, and also because it will be helpful in a future patch to automatically check that the files are synchronised. Signed-off-by: Quentin Monnet <quentin@isovalent.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210730215435.7095-5-quentin@isovalent.com Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
2022-01-17 14:25:38 +00:00
" " HELP_SPEC_OPTIONS " }\n"
"",
bpftool: Add struct_ops support This patch adds struct_ops support to the bpftool. To recap a bit on the recent bpf_struct_ops feature on the kernel side: It currently supports "struct tcp_congestion_ops" to be implemented in bpf. At a high level, bpf_struct_ops is struct_ops map populated with a number of bpf progs. bpf_struct_ops currently supports the "struct tcp_congestion_ops". However, the bpf_struct_ops design is generic enough that other kernel struct ops can be supported in the future. Although struct_ops is map+progs at a high lever, there are differences in details. For example, 1) After registering a struct_ops, the struct_ops is held by the kernel subsystem (e.g. tcp-cc). Thus, there is no need to pin a struct_ops map or its progs in order to keep them around. 2) To iterate all struct_ops in a system, it iterates all maps in type BPF_MAP_TYPE_STRUCT_OPS. BPF_MAP_TYPE_STRUCT_OPS is the current usual filter. In the future, it may need to filter by other struct_ops specific properties. e.g. filter by tcp_congestion_ops or other kernel subsystem ops in the future. 3) struct_ops requires the running kernel having BTF info. That allows more flexibility in handling other kernel structs. e.g. it can always dump the latest bpf_map_info. 4) Also, "struct_ops" command is not intended to repeat all features already provided by "map" or "prog". For example, if there really is a need to pin the struct_ops map, the user can use the "map" cmd to do that. While the first attempt was to reuse parts from map/prog.c, it ended up not a lot to share. The only obvious item is the map_parse_fds() but that still requires modifications to accommodate struct_ops map specific filtering (for the immediate and the future needs). Together with the earlier mentioned differences, it is better to part away from map/prog.c. The initial set of subcmds are, register, unregister, show, and dump. For register, it registers all struct_ops maps that can be found in an obj file. Option can be added in the future to specify a particular struct_ops map. Also, the common bpf_tcp_cc is stateless (e.g. bpf_cubic.c and bpf_dctcp.c). The "reuse map" feature is not implemented in this patch and it can be considered later also. For other subcmds, please see the man doc for details. A sample output of dump: [root@arch-fb-vm1 bpf]# bpftool struct_ops dump name cubic [{ "bpf_map_info": { "type": 26, "id": 64, "key_size": 4, "value_size": 256, "max_entries": 1, "map_flags": 0, "name": "cubic", "ifindex": 0, "btf_vmlinux_value_type_id": 18452, "netns_dev": 0, "netns_ino": 0, "btf_id": 52, "btf_key_type_id": 0, "btf_value_type_id": 0 } },{ "bpf_struct_ops_tcp_congestion_ops": { "refcnt": { "refs": { "counter": 1 } }, "state": "BPF_STRUCT_OPS_STATE_INUSE", "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 0, "init": "void (struct sock *) bictcp_init/prog_id:138", "release": "void (struct sock *) 0", "ssthresh": "u32 (struct sock *) bictcp_recalc_ssthresh/prog_id:141", "cong_avoid": "void (struct sock *, u32, u32) bictcp_cong_avoid/prog_id:140", "set_state": "void (struct sock *, u8) bictcp_state/prog_id:142", "cwnd_event": "void (struct sock *, enum tcp_ca_event) bictcp_cwnd_event/prog_id:139", "in_ack_event": "void (struct sock *, u32) 0", "undo_cwnd": "u32 (struct sock *) tcp_reno_undo_cwnd/prog_id:144", "pkts_acked": "void (struct sock *, const struct ack_sample *) bictcp_acked/prog_id:143", "min_tso_segs": "u32 (struct sock *) 0", "sndbuf_expand": "u32 (struct sock *) 0", "cong_control": "void (struct sock *, const struct rate_sample *) 0", "get_info": "size_t (struct sock *, u32, int *, union tcp_cc_info *) 0", "name": "bpf_cubic", "owner": 0 } } } ] Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20200318171656.129650-1-kafai@fb.com
2020-03-18 17:16:56 +00:00
bin_name, argv[-2]);
return 0;
}
static const struct cmd cmds[] = {
{ "show", do_show },
{ "list", do_show },
{ "register", do_register },
{ "unregister", do_unregister },
{ "dump", do_dump },
{ "help", do_help },
{ 0 }
};
int do_struct_ops(int argc, char **argv)
{
int err;
err = cmd_select(cmds, argc, argv, do_help);
btf__free(btf_vmlinux);
bpftool: Add struct_ops support This patch adds struct_ops support to the bpftool. To recap a bit on the recent bpf_struct_ops feature on the kernel side: It currently supports "struct tcp_congestion_ops" to be implemented in bpf. At a high level, bpf_struct_ops is struct_ops map populated with a number of bpf progs. bpf_struct_ops currently supports the "struct tcp_congestion_ops". However, the bpf_struct_ops design is generic enough that other kernel struct ops can be supported in the future. Although struct_ops is map+progs at a high lever, there are differences in details. For example, 1) After registering a struct_ops, the struct_ops is held by the kernel subsystem (e.g. tcp-cc). Thus, there is no need to pin a struct_ops map or its progs in order to keep them around. 2) To iterate all struct_ops in a system, it iterates all maps in type BPF_MAP_TYPE_STRUCT_OPS. BPF_MAP_TYPE_STRUCT_OPS is the current usual filter. In the future, it may need to filter by other struct_ops specific properties. e.g. filter by tcp_congestion_ops or other kernel subsystem ops in the future. 3) struct_ops requires the running kernel having BTF info. That allows more flexibility in handling other kernel structs. e.g. it can always dump the latest bpf_map_info. 4) Also, "struct_ops" command is not intended to repeat all features already provided by "map" or "prog". For example, if there really is a need to pin the struct_ops map, the user can use the "map" cmd to do that. While the first attempt was to reuse parts from map/prog.c, it ended up not a lot to share. The only obvious item is the map_parse_fds() but that still requires modifications to accommodate struct_ops map specific filtering (for the immediate and the future needs). Together with the earlier mentioned differences, it is better to part away from map/prog.c. The initial set of subcmds are, register, unregister, show, and dump. For register, it registers all struct_ops maps that can be found in an obj file. Option can be added in the future to specify a particular struct_ops map. Also, the common bpf_tcp_cc is stateless (e.g. bpf_cubic.c and bpf_dctcp.c). The "reuse map" feature is not implemented in this patch and it can be considered later also. For other subcmds, please see the man doc for details. A sample output of dump: [root@arch-fb-vm1 bpf]# bpftool struct_ops dump name cubic [{ "bpf_map_info": { "type": 26, "id": 64, "key_size": 4, "value_size": 256, "max_entries": 1, "map_flags": 0, "name": "cubic", "ifindex": 0, "btf_vmlinux_value_type_id": 18452, "netns_dev": 0, "netns_ino": 0, "btf_id": 52, "btf_key_type_id": 0, "btf_value_type_id": 0 } },{ "bpf_struct_ops_tcp_congestion_ops": { "refcnt": { "refs": { "counter": 1 } }, "state": "BPF_STRUCT_OPS_STATE_INUSE", "data": { "list": { "next": 0, "prev": 0 }, "key": 0, "flags": 0, "init": "void (struct sock *) bictcp_init/prog_id:138", "release": "void (struct sock *) 0", "ssthresh": "u32 (struct sock *) bictcp_recalc_ssthresh/prog_id:141", "cong_avoid": "void (struct sock *, u32, u32) bictcp_cong_avoid/prog_id:140", "set_state": "void (struct sock *, u8) bictcp_state/prog_id:142", "cwnd_event": "void (struct sock *, enum tcp_ca_event) bictcp_cwnd_event/prog_id:139", "in_ack_event": "void (struct sock *, u32) 0", "undo_cwnd": "u32 (struct sock *) tcp_reno_undo_cwnd/prog_id:144", "pkts_acked": "void (struct sock *, const struct ack_sample *) bictcp_acked/prog_id:143", "min_tso_segs": "u32 (struct sock *) 0", "sndbuf_expand": "u32 (struct sock *) 0", "cong_control": "void (struct sock *, const struct rate_sample *) 0", "get_info": "size_t (struct sock *, u32, int *, union tcp_cc_info *) 0", "name": "bpf_cubic", "owner": 0 } } } ] Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20200318171656.129650-1-kafai@fb.com
2020-03-18 17:16:56 +00:00
return err;
}