Centos-kernel-stream-9/kernel/bpf/cgroup_iter.c

360 lines
9.9 KiB
C
Raw Normal View History

bpf: Introduce cgroup iter Bugzilla: https://bugzilla.redhat.com/2166911 commit d4ccaf58a8472123ac97e6db03932c375b5c45ba Author: Hao Luo <haoluo@google.com> Date: Wed Aug 24 16:31:13 2022 -0700 bpf: Introduce cgroup iter Cgroup_iter is a type of bpf_iter. It walks over cgroups in four modes: - walking a cgroup's descendants in pre-order. - walking a cgroup's descendants in post-order. - walking a cgroup's ancestors. - process only the given cgroup. When attaching cgroup_iter, one can set a cgroup to the iter_link created from attaching. This cgroup is passed as a file descriptor or cgroup id and serves as the starting point of the walk. If no cgroup is specified, the starting point will be the root cgroup v2. For walking descendants, one can specify the order: either pre-order or post-order. For walking ancestors, the walk starts at the specified cgroup and ends at the root. One can also terminate the walk early by returning 1 from the iter program. Note that because walking cgroup hierarchy holds cgroup_mutex, the iter program is called with cgroup_mutex held. Currently only one session is supported, which means, depending on the volume of data bpf program intends to send to user space, the number of cgroups that can be walked is limited. For example, given the current buffer size is 8 * PAGE_SIZE, if the program sends 64B data for each cgroup, assuming PAGE_SIZE is 4kb, the total number of cgroups that can be walked is 512. This is a limitation of cgroup_iter. If the output data is larger than the kernel buffer size, after all data in the kernel buffer is consumed by user space, the subsequent read() syscall will signal EOPNOTSUPP. In order to work around, the user may have to update their program to reduce the volume of data sent to output. For example, skip some uninteresting cgroups. In future, we may extend bpf_iter flags to allow customizing buffer size. Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220824233117.1312810-2-haoluo@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2023-02-03 13:48:02 +00:00
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2022 Google */
#include <linux/bpf.h>
#include <linux/btf_ids.h>
#include <linux/cgroup.h>
#include <linux/kernel.h>
#include <linux/seq_file.h>
#include "../cgroup/cgroup-internal.h" /* cgroup_mutex and cgroup_is_dead */
/* cgroup_iter provides four modes of traversal to the cgroup hierarchy.
*
* 1. Walk the descendants of a cgroup in pre-order.
* 2. Walk the descendants of a cgroup in post-order.
* 3. Walk the ancestors of a cgroup.
* 4. Show the given cgroup only.
*
* For walking descendants, cgroup_iter can walk in either pre-order or
* post-order. For walking ancestors, the iter walks up from a cgroup to
* the root.
*
* The iter program can terminate the walk early by returning 1. Walk
* continues if prog returns 0.
*
* The prog can check (seq->num == 0) to determine whether this is
* the first element. The prog may also be passed a NULL cgroup,
* which means the walk has completed and the prog has a chance to
* do post-processing, such as outputting an epilogue.
*
* Note: the iter_prog is called with cgroup_mutex held.
*
* Currently only one session is supported, which means, depending on the
* volume of data bpf program intends to send to user space, the number
* of cgroups that can be walked is limited. For example, given the current
* buffer size is 8 * PAGE_SIZE, if the program sends 64B data for each
* cgroup, assuming PAGE_SIZE is 4kb, the total number of cgroups that can
* be walked is 512. This is a limitation of cgroup_iter. If the output data
* is larger than the kernel buffer size, after all data in the kernel buffer
* is consumed by user space, the subsequent read() syscall will signal
* EOPNOTSUPP. In order to work around, the user may have to update their
* program to reduce the volume of data sent to output. For example, skip
* some uninteresting cgroups.
*/
struct bpf_iter__cgroup {
__bpf_md_ptr(struct bpf_iter_meta *, meta);
__bpf_md_ptr(struct cgroup *, cgroup);
};
struct cgroup_iter_priv {
struct cgroup_subsys_state *start_css;
bool visited_all;
bool terminate;
int order;
};
static void *cgroup_iter_seq_start(struct seq_file *seq, loff_t *pos)
{
struct cgroup_iter_priv *p = seq->private;
cgroup_lock();
bpf: Introduce cgroup iter Bugzilla: https://bugzilla.redhat.com/2166911 commit d4ccaf58a8472123ac97e6db03932c375b5c45ba Author: Hao Luo <haoluo@google.com> Date: Wed Aug 24 16:31:13 2022 -0700 bpf: Introduce cgroup iter Cgroup_iter is a type of bpf_iter. It walks over cgroups in four modes: - walking a cgroup's descendants in pre-order. - walking a cgroup's descendants in post-order. - walking a cgroup's ancestors. - process only the given cgroup. When attaching cgroup_iter, one can set a cgroup to the iter_link created from attaching. This cgroup is passed as a file descriptor or cgroup id and serves as the starting point of the walk. If no cgroup is specified, the starting point will be the root cgroup v2. For walking descendants, one can specify the order: either pre-order or post-order. For walking ancestors, the walk starts at the specified cgroup and ends at the root. One can also terminate the walk early by returning 1 from the iter program. Note that because walking cgroup hierarchy holds cgroup_mutex, the iter program is called with cgroup_mutex held. Currently only one session is supported, which means, depending on the volume of data bpf program intends to send to user space, the number of cgroups that can be walked is limited. For example, given the current buffer size is 8 * PAGE_SIZE, if the program sends 64B data for each cgroup, assuming PAGE_SIZE is 4kb, the total number of cgroups that can be walked is 512. This is a limitation of cgroup_iter. If the output data is larger than the kernel buffer size, after all data in the kernel buffer is consumed by user space, the subsequent read() syscall will signal EOPNOTSUPP. In order to work around, the user may have to update their program to reduce the volume of data sent to output. For example, skip some uninteresting cgroups. In future, we may extend bpf_iter flags to allow customizing buffer size. Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220824233117.1312810-2-haoluo@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2023-02-03 13:48:02 +00:00
/* cgroup_iter doesn't support read across multiple sessions. */
if (*pos > 0) {
if (p->visited_all)
return NULL;
/* Haven't visited all, but because cgroup_mutex has dropped,
* return -EOPNOTSUPP to indicate incomplete iteration.
*/
return ERR_PTR(-EOPNOTSUPP);
}
++*pos;
p->terminate = false;
p->visited_all = false;
if (p->order == BPF_CGROUP_ITER_DESCENDANTS_PRE)
bpf: Introduce cgroup iter Bugzilla: https://bugzilla.redhat.com/2166911 commit d4ccaf58a8472123ac97e6db03932c375b5c45ba Author: Hao Luo <haoluo@google.com> Date: Wed Aug 24 16:31:13 2022 -0700 bpf: Introduce cgroup iter Cgroup_iter is a type of bpf_iter. It walks over cgroups in four modes: - walking a cgroup's descendants in pre-order. - walking a cgroup's descendants in post-order. - walking a cgroup's ancestors. - process only the given cgroup. When attaching cgroup_iter, one can set a cgroup to the iter_link created from attaching. This cgroup is passed as a file descriptor or cgroup id and serves as the starting point of the walk. If no cgroup is specified, the starting point will be the root cgroup v2. For walking descendants, one can specify the order: either pre-order or post-order. For walking ancestors, the walk starts at the specified cgroup and ends at the root. One can also terminate the walk early by returning 1 from the iter program. Note that because walking cgroup hierarchy holds cgroup_mutex, the iter program is called with cgroup_mutex held. Currently only one session is supported, which means, depending on the volume of data bpf program intends to send to user space, the number of cgroups that can be walked is limited. For example, given the current buffer size is 8 * PAGE_SIZE, if the program sends 64B data for each cgroup, assuming PAGE_SIZE is 4kb, the total number of cgroups that can be walked is 512. This is a limitation of cgroup_iter. If the output data is larger than the kernel buffer size, after all data in the kernel buffer is consumed by user space, the subsequent read() syscall will signal EOPNOTSUPP. In order to work around, the user may have to update their program to reduce the volume of data sent to output. For example, skip some uninteresting cgroups. In future, we may extend bpf_iter flags to allow customizing buffer size. Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220824233117.1312810-2-haoluo@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2023-02-03 13:48:02 +00:00
return css_next_descendant_pre(NULL, p->start_css);
else if (p->order == BPF_CGROUP_ITER_DESCENDANTS_POST)
bpf: Introduce cgroup iter Bugzilla: https://bugzilla.redhat.com/2166911 commit d4ccaf58a8472123ac97e6db03932c375b5c45ba Author: Hao Luo <haoluo@google.com> Date: Wed Aug 24 16:31:13 2022 -0700 bpf: Introduce cgroup iter Cgroup_iter is a type of bpf_iter. It walks over cgroups in four modes: - walking a cgroup's descendants in pre-order. - walking a cgroup's descendants in post-order. - walking a cgroup's ancestors. - process only the given cgroup. When attaching cgroup_iter, one can set a cgroup to the iter_link created from attaching. This cgroup is passed as a file descriptor or cgroup id and serves as the starting point of the walk. If no cgroup is specified, the starting point will be the root cgroup v2. For walking descendants, one can specify the order: either pre-order or post-order. For walking ancestors, the walk starts at the specified cgroup and ends at the root. One can also terminate the walk early by returning 1 from the iter program. Note that because walking cgroup hierarchy holds cgroup_mutex, the iter program is called with cgroup_mutex held. Currently only one session is supported, which means, depending on the volume of data bpf program intends to send to user space, the number of cgroups that can be walked is limited. For example, given the current buffer size is 8 * PAGE_SIZE, if the program sends 64B data for each cgroup, assuming PAGE_SIZE is 4kb, the total number of cgroups that can be walked is 512. This is a limitation of cgroup_iter. If the output data is larger than the kernel buffer size, after all data in the kernel buffer is consumed by user space, the subsequent read() syscall will signal EOPNOTSUPP. In order to work around, the user may have to update their program to reduce the volume of data sent to output. For example, skip some uninteresting cgroups. In future, we may extend bpf_iter flags to allow customizing buffer size. Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220824233117.1312810-2-haoluo@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2023-02-03 13:48:02 +00:00
return css_next_descendant_post(NULL, p->start_css);
else /* BPF_CGROUP_ITER_SELF_ONLY and BPF_CGROUP_ITER_ANCESTORS_UP */
bpf: Introduce cgroup iter Bugzilla: https://bugzilla.redhat.com/2166911 commit d4ccaf58a8472123ac97e6db03932c375b5c45ba Author: Hao Luo <haoluo@google.com> Date: Wed Aug 24 16:31:13 2022 -0700 bpf: Introduce cgroup iter Cgroup_iter is a type of bpf_iter. It walks over cgroups in four modes: - walking a cgroup's descendants in pre-order. - walking a cgroup's descendants in post-order. - walking a cgroup's ancestors. - process only the given cgroup. When attaching cgroup_iter, one can set a cgroup to the iter_link created from attaching. This cgroup is passed as a file descriptor or cgroup id and serves as the starting point of the walk. If no cgroup is specified, the starting point will be the root cgroup v2. For walking descendants, one can specify the order: either pre-order or post-order. For walking ancestors, the walk starts at the specified cgroup and ends at the root. One can also terminate the walk early by returning 1 from the iter program. Note that because walking cgroup hierarchy holds cgroup_mutex, the iter program is called with cgroup_mutex held. Currently only one session is supported, which means, depending on the volume of data bpf program intends to send to user space, the number of cgroups that can be walked is limited. For example, given the current buffer size is 8 * PAGE_SIZE, if the program sends 64B data for each cgroup, assuming PAGE_SIZE is 4kb, the total number of cgroups that can be walked is 512. This is a limitation of cgroup_iter. If the output data is larger than the kernel buffer size, after all data in the kernel buffer is consumed by user space, the subsequent read() syscall will signal EOPNOTSUPP. In order to work around, the user may have to update their program to reduce the volume of data sent to output. For example, skip some uninteresting cgroups. In future, we may extend bpf_iter flags to allow customizing buffer size. Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220824233117.1312810-2-haoluo@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2023-02-03 13:48:02 +00:00
return p->start_css;
}
static int __cgroup_iter_seq_show(struct seq_file *seq,
struct cgroup_subsys_state *css, int in_stop);
static void cgroup_iter_seq_stop(struct seq_file *seq, void *v)
{
struct cgroup_iter_priv *p = seq->private;
cgroup_unlock();
bpf: Introduce cgroup iter Bugzilla: https://bugzilla.redhat.com/2166911 commit d4ccaf58a8472123ac97e6db03932c375b5c45ba Author: Hao Luo <haoluo@google.com> Date: Wed Aug 24 16:31:13 2022 -0700 bpf: Introduce cgroup iter Cgroup_iter is a type of bpf_iter. It walks over cgroups in four modes: - walking a cgroup's descendants in pre-order. - walking a cgroup's descendants in post-order. - walking a cgroup's ancestors. - process only the given cgroup. When attaching cgroup_iter, one can set a cgroup to the iter_link created from attaching. This cgroup is passed as a file descriptor or cgroup id and serves as the starting point of the walk. If no cgroup is specified, the starting point will be the root cgroup v2. For walking descendants, one can specify the order: either pre-order or post-order. For walking ancestors, the walk starts at the specified cgroup and ends at the root. One can also terminate the walk early by returning 1 from the iter program. Note that because walking cgroup hierarchy holds cgroup_mutex, the iter program is called with cgroup_mutex held. Currently only one session is supported, which means, depending on the volume of data bpf program intends to send to user space, the number of cgroups that can be walked is limited. For example, given the current buffer size is 8 * PAGE_SIZE, if the program sends 64B data for each cgroup, assuming PAGE_SIZE is 4kb, the total number of cgroups that can be walked is 512. This is a limitation of cgroup_iter. If the output data is larger than the kernel buffer size, after all data in the kernel buffer is consumed by user space, the subsequent read() syscall will signal EOPNOTSUPP. In order to work around, the user may have to update their program to reduce the volume of data sent to output. For example, skip some uninteresting cgroups. In future, we may extend bpf_iter flags to allow customizing buffer size. Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220824233117.1312810-2-haoluo@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2023-02-03 13:48:02 +00:00
/* pass NULL to the prog for post-processing */
if (!v) {
__cgroup_iter_seq_show(seq, NULL, true);
p->visited_all = true;
}
}
static void *cgroup_iter_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct cgroup_subsys_state *curr = (struct cgroup_subsys_state *)v;
struct cgroup_iter_priv *p = seq->private;
++*pos;
if (p->terminate)
return NULL;
if (p->order == BPF_CGROUP_ITER_DESCENDANTS_PRE)
bpf: Introduce cgroup iter Bugzilla: https://bugzilla.redhat.com/2166911 commit d4ccaf58a8472123ac97e6db03932c375b5c45ba Author: Hao Luo <haoluo@google.com> Date: Wed Aug 24 16:31:13 2022 -0700 bpf: Introduce cgroup iter Cgroup_iter is a type of bpf_iter. It walks over cgroups in four modes: - walking a cgroup's descendants in pre-order. - walking a cgroup's descendants in post-order. - walking a cgroup's ancestors. - process only the given cgroup. When attaching cgroup_iter, one can set a cgroup to the iter_link created from attaching. This cgroup is passed as a file descriptor or cgroup id and serves as the starting point of the walk. If no cgroup is specified, the starting point will be the root cgroup v2. For walking descendants, one can specify the order: either pre-order or post-order. For walking ancestors, the walk starts at the specified cgroup and ends at the root. One can also terminate the walk early by returning 1 from the iter program. Note that because walking cgroup hierarchy holds cgroup_mutex, the iter program is called with cgroup_mutex held. Currently only one session is supported, which means, depending on the volume of data bpf program intends to send to user space, the number of cgroups that can be walked is limited. For example, given the current buffer size is 8 * PAGE_SIZE, if the program sends 64B data for each cgroup, assuming PAGE_SIZE is 4kb, the total number of cgroups that can be walked is 512. This is a limitation of cgroup_iter. If the output data is larger than the kernel buffer size, after all data in the kernel buffer is consumed by user space, the subsequent read() syscall will signal EOPNOTSUPP. In order to work around, the user may have to update their program to reduce the volume of data sent to output. For example, skip some uninteresting cgroups. In future, we may extend bpf_iter flags to allow customizing buffer size. Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220824233117.1312810-2-haoluo@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2023-02-03 13:48:02 +00:00
return css_next_descendant_pre(curr, p->start_css);
else if (p->order == BPF_CGROUP_ITER_DESCENDANTS_POST)
bpf: Introduce cgroup iter Bugzilla: https://bugzilla.redhat.com/2166911 commit d4ccaf58a8472123ac97e6db03932c375b5c45ba Author: Hao Luo <haoluo@google.com> Date: Wed Aug 24 16:31:13 2022 -0700 bpf: Introduce cgroup iter Cgroup_iter is a type of bpf_iter. It walks over cgroups in four modes: - walking a cgroup's descendants in pre-order. - walking a cgroup's descendants in post-order. - walking a cgroup's ancestors. - process only the given cgroup. When attaching cgroup_iter, one can set a cgroup to the iter_link created from attaching. This cgroup is passed as a file descriptor or cgroup id and serves as the starting point of the walk. If no cgroup is specified, the starting point will be the root cgroup v2. For walking descendants, one can specify the order: either pre-order or post-order. For walking ancestors, the walk starts at the specified cgroup and ends at the root. One can also terminate the walk early by returning 1 from the iter program. Note that because walking cgroup hierarchy holds cgroup_mutex, the iter program is called with cgroup_mutex held. Currently only one session is supported, which means, depending on the volume of data bpf program intends to send to user space, the number of cgroups that can be walked is limited. For example, given the current buffer size is 8 * PAGE_SIZE, if the program sends 64B data for each cgroup, assuming PAGE_SIZE is 4kb, the total number of cgroups that can be walked is 512. This is a limitation of cgroup_iter. If the output data is larger than the kernel buffer size, after all data in the kernel buffer is consumed by user space, the subsequent read() syscall will signal EOPNOTSUPP. In order to work around, the user may have to update their program to reduce the volume of data sent to output. For example, skip some uninteresting cgroups. In future, we may extend bpf_iter flags to allow customizing buffer size. Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220824233117.1312810-2-haoluo@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2023-02-03 13:48:02 +00:00
return css_next_descendant_post(curr, p->start_css);
else if (p->order == BPF_CGROUP_ITER_ANCESTORS_UP)
bpf: Introduce cgroup iter Bugzilla: https://bugzilla.redhat.com/2166911 commit d4ccaf58a8472123ac97e6db03932c375b5c45ba Author: Hao Luo <haoluo@google.com> Date: Wed Aug 24 16:31:13 2022 -0700 bpf: Introduce cgroup iter Cgroup_iter is a type of bpf_iter. It walks over cgroups in four modes: - walking a cgroup's descendants in pre-order. - walking a cgroup's descendants in post-order. - walking a cgroup's ancestors. - process only the given cgroup. When attaching cgroup_iter, one can set a cgroup to the iter_link created from attaching. This cgroup is passed as a file descriptor or cgroup id and serves as the starting point of the walk. If no cgroup is specified, the starting point will be the root cgroup v2. For walking descendants, one can specify the order: either pre-order or post-order. For walking ancestors, the walk starts at the specified cgroup and ends at the root. One can also terminate the walk early by returning 1 from the iter program. Note that because walking cgroup hierarchy holds cgroup_mutex, the iter program is called with cgroup_mutex held. Currently only one session is supported, which means, depending on the volume of data bpf program intends to send to user space, the number of cgroups that can be walked is limited. For example, given the current buffer size is 8 * PAGE_SIZE, if the program sends 64B data for each cgroup, assuming PAGE_SIZE is 4kb, the total number of cgroups that can be walked is 512. This is a limitation of cgroup_iter. If the output data is larger than the kernel buffer size, after all data in the kernel buffer is consumed by user space, the subsequent read() syscall will signal EOPNOTSUPP. In order to work around, the user may have to update their program to reduce the volume of data sent to output. For example, skip some uninteresting cgroups. In future, we may extend bpf_iter flags to allow customizing buffer size. Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220824233117.1312810-2-haoluo@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2023-02-03 13:48:02 +00:00
return curr->parent;
else /* BPF_CGROUP_ITER_SELF_ONLY */
bpf: Introduce cgroup iter Bugzilla: https://bugzilla.redhat.com/2166911 commit d4ccaf58a8472123ac97e6db03932c375b5c45ba Author: Hao Luo <haoluo@google.com> Date: Wed Aug 24 16:31:13 2022 -0700 bpf: Introduce cgroup iter Cgroup_iter is a type of bpf_iter. It walks over cgroups in four modes: - walking a cgroup's descendants in pre-order. - walking a cgroup's descendants in post-order. - walking a cgroup's ancestors. - process only the given cgroup. When attaching cgroup_iter, one can set a cgroup to the iter_link created from attaching. This cgroup is passed as a file descriptor or cgroup id and serves as the starting point of the walk. If no cgroup is specified, the starting point will be the root cgroup v2. For walking descendants, one can specify the order: either pre-order or post-order. For walking ancestors, the walk starts at the specified cgroup and ends at the root. One can also terminate the walk early by returning 1 from the iter program. Note that because walking cgroup hierarchy holds cgroup_mutex, the iter program is called with cgroup_mutex held. Currently only one session is supported, which means, depending on the volume of data bpf program intends to send to user space, the number of cgroups that can be walked is limited. For example, given the current buffer size is 8 * PAGE_SIZE, if the program sends 64B data for each cgroup, assuming PAGE_SIZE is 4kb, the total number of cgroups that can be walked is 512. This is a limitation of cgroup_iter. If the output data is larger than the kernel buffer size, after all data in the kernel buffer is consumed by user space, the subsequent read() syscall will signal EOPNOTSUPP. In order to work around, the user may have to update their program to reduce the volume of data sent to output. For example, skip some uninteresting cgroups. In future, we may extend bpf_iter flags to allow customizing buffer size. Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220824233117.1312810-2-haoluo@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2023-02-03 13:48:02 +00:00
return NULL;
}
static int __cgroup_iter_seq_show(struct seq_file *seq,
struct cgroup_subsys_state *css, int in_stop)
{
struct cgroup_iter_priv *p = seq->private;
struct bpf_iter__cgroup ctx;
struct bpf_iter_meta meta;
struct bpf_prog *prog;
int ret = 0;
/* cgroup is dead, skip this element */
if (css && cgroup_is_dead(css->cgroup))
return 0;
ctx.meta = &meta;
ctx.cgroup = css ? css->cgroup : NULL;
meta.seq = seq;
prog = bpf_iter_get_info(&meta, in_stop);
if (prog)
ret = bpf_iter_run_prog(prog, &ctx);
/* if prog returns > 0, terminate after this element. */
if (ret != 0)
p->terminate = true;
return 0;
}
static int cgroup_iter_seq_show(struct seq_file *seq, void *v)
{
return __cgroup_iter_seq_show(seq, (struct cgroup_subsys_state *)v,
false);
}
static const struct seq_operations cgroup_iter_seq_ops = {
.start = cgroup_iter_seq_start,
.next = cgroup_iter_seq_next,
.stop = cgroup_iter_seq_stop,
.show = cgroup_iter_seq_show,
};
BTF_ID_LIST_GLOBAL_SINGLE(bpf_cgroup_btf_id, struct, cgroup)
bpf: Introduce cgroup iter Bugzilla: https://bugzilla.redhat.com/2166911 commit d4ccaf58a8472123ac97e6db03932c375b5c45ba Author: Hao Luo <haoluo@google.com> Date: Wed Aug 24 16:31:13 2022 -0700 bpf: Introduce cgroup iter Cgroup_iter is a type of bpf_iter. It walks over cgroups in four modes: - walking a cgroup's descendants in pre-order. - walking a cgroup's descendants in post-order. - walking a cgroup's ancestors. - process only the given cgroup. When attaching cgroup_iter, one can set a cgroup to the iter_link created from attaching. This cgroup is passed as a file descriptor or cgroup id and serves as the starting point of the walk. If no cgroup is specified, the starting point will be the root cgroup v2. For walking descendants, one can specify the order: either pre-order or post-order. For walking ancestors, the walk starts at the specified cgroup and ends at the root. One can also terminate the walk early by returning 1 from the iter program. Note that because walking cgroup hierarchy holds cgroup_mutex, the iter program is called with cgroup_mutex held. Currently only one session is supported, which means, depending on the volume of data bpf program intends to send to user space, the number of cgroups that can be walked is limited. For example, given the current buffer size is 8 * PAGE_SIZE, if the program sends 64B data for each cgroup, assuming PAGE_SIZE is 4kb, the total number of cgroups that can be walked is 512. This is a limitation of cgroup_iter. If the output data is larger than the kernel buffer size, after all data in the kernel buffer is consumed by user space, the subsequent read() syscall will signal EOPNOTSUPP. In order to work around, the user may have to update their program to reduce the volume of data sent to output. For example, skip some uninteresting cgroups. In future, we may extend bpf_iter flags to allow customizing buffer size. Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220824233117.1312810-2-haoluo@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2023-02-03 13:48:02 +00:00
static int cgroup_iter_seq_init(void *priv, struct bpf_iter_aux_info *aux)
{
struct cgroup_iter_priv *p = (struct cgroup_iter_priv *)priv;
struct cgroup *cgrp = aux->cgroup.start;
/* bpf_iter_attach_cgroup() has already acquired an extra reference
* for the start cgroup, but the reference may be released after
* cgroup_iter_seq_init(), so acquire another reference for the
* start cgroup.
*/
bpf: Introduce cgroup iter Bugzilla: https://bugzilla.redhat.com/2166911 commit d4ccaf58a8472123ac97e6db03932c375b5c45ba Author: Hao Luo <haoluo@google.com> Date: Wed Aug 24 16:31:13 2022 -0700 bpf: Introduce cgroup iter Cgroup_iter is a type of bpf_iter. It walks over cgroups in four modes: - walking a cgroup's descendants in pre-order. - walking a cgroup's descendants in post-order. - walking a cgroup's ancestors. - process only the given cgroup. When attaching cgroup_iter, one can set a cgroup to the iter_link created from attaching. This cgroup is passed as a file descriptor or cgroup id and serves as the starting point of the walk. If no cgroup is specified, the starting point will be the root cgroup v2. For walking descendants, one can specify the order: either pre-order or post-order. For walking ancestors, the walk starts at the specified cgroup and ends at the root. One can also terminate the walk early by returning 1 from the iter program. Note that because walking cgroup hierarchy holds cgroup_mutex, the iter program is called with cgroup_mutex held. Currently only one session is supported, which means, depending on the volume of data bpf program intends to send to user space, the number of cgroups that can be walked is limited. For example, given the current buffer size is 8 * PAGE_SIZE, if the program sends 64B data for each cgroup, assuming PAGE_SIZE is 4kb, the total number of cgroups that can be walked is 512. This is a limitation of cgroup_iter. If the output data is larger than the kernel buffer size, after all data in the kernel buffer is consumed by user space, the subsequent read() syscall will signal EOPNOTSUPP. In order to work around, the user may have to update their program to reduce the volume of data sent to output. For example, skip some uninteresting cgroups. In future, we may extend bpf_iter flags to allow customizing buffer size. Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220824233117.1312810-2-haoluo@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2023-02-03 13:48:02 +00:00
p->start_css = &cgrp->self;
css_get(p->start_css);
bpf: Introduce cgroup iter Bugzilla: https://bugzilla.redhat.com/2166911 commit d4ccaf58a8472123ac97e6db03932c375b5c45ba Author: Hao Luo <haoluo@google.com> Date: Wed Aug 24 16:31:13 2022 -0700 bpf: Introduce cgroup iter Cgroup_iter is a type of bpf_iter. It walks over cgroups in four modes: - walking a cgroup's descendants in pre-order. - walking a cgroup's descendants in post-order. - walking a cgroup's ancestors. - process only the given cgroup. When attaching cgroup_iter, one can set a cgroup to the iter_link created from attaching. This cgroup is passed as a file descriptor or cgroup id and serves as the starting point of the walk. If no cgroup is specified, the starting point will be the root cgroup v2. For walking descendants, one can specify the order: either pre-order or post-order. For walking ancestors, the walk starts at the specified cgroup and ends at the root. One can also terminate the walk early by returning 1 from the iter program. Note that because walking cgroup hierarchy holds cgroup_mutex, the iter program is called with cgroup_mutex held. Currently only one session is supported, which means, depending on the volume of data bpf program intends to send to user space, the number of cgroups that can be walked is limited. For example, given the current buffer size is 8 * PAGE_SIZE, if the program sends 64B data for each cgroup, assuming PAGE_SIZE is 4kb, the total number of cgroups that can be walked is 512. This is a limitation of cgroup_iter. If the output data is larger than the kernel buffer size, after all data in the kernel buffer is consumed by user space, the subsequent read() syscall will signal EOPNOTSUPP. In order to work around, the user may have to update their program to reduce the volume of data sent to output. For example, skip some uninteresting cgroups. In future, we may extend bpf_iter flags to allow customizing buffer size. Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220824233117.1312810-2-haoluo@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2023-02-03 13:48:02 +00:00
p->terminate = false;
p->visited_all = false;
p->order = aux->cgroup.order;
return 0;
}
static void cgroup_iter_seq_fini(void *priv)
{
struct cgroup_iter_priv *p = (struct cgroup_iter_priv *)priv;
css_put(p->start_css);
}
bpf: Introduce cgroup iter Bugzilla: https://bugzilla.redhat.com/2166911 commit d4ccaf58a8472123ac97e6db03932c375b5c45ba Author: Hao Luo <haoluo@google.com> Date: Wed Aug 24 16:31:13 2022 -0700 bpf: Introduce cgroup iter Cgroup_iter is a type of bpf_iter. It walks over cgroups in four modes: - walking a cgroup's descendants in pre-order. - walking a cgroup's descendants in post-order. - walking a cgroup's ancestors. - process only the given cgroup. When attaching cgroup_iter, one can set a cgroup to the iter_link created from attaching. This cgroup is passed as a file descriptor or cgroup id and serves as the starting point of the walk. If no cgroup is specified, the starting point will be the root cgroup v2. For walking descendants, one can specify the order: either pre-order or post-order. For walking ancestors, the walk starts at the specified cgroup and ends at the root. One can also terminate the walk early by returning 1 from the iter program. Note that because walking cgroup hierarchy holds cgroup_mutex, the iter program is called with cgroup_mutex held. Currently only one session is supported, which means, depending on the volume of data bpf program intends to send to user space, the number of cgroups that can be walked is limited. For example, given the current buffer size is 8 * PAGE_SIZE, if the program sends 64B data for each cgroup, assuming PAGE_SIZE is 4kb, the total number of cgroups that can be walked is 512. This is a limitation of cgroup_iter. If the output data is larger than the kernel buffer size, after all data in the kernel buffer is consumed by user space, the subsequent read() syscall will signal EOPNOTSUPP. In order to work around, the user may have to update their program to reduce the volume of data sent to output. For example, skip some uninteresting cgroups. In future, we may extend bpf_iter flags to allow customizing buffer size. Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220824233117.1312810-2-haoluo@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2023-02-03 13:48:02 +00:00
static const struct bpf_iter_seq_info cgroup_iter_seq_info = {
.seq_ops = &cgroup_iter_seq_ops,
.init_seq_private = cgroup_iter_seq_init,
.fini_seq_private = cgroup_iter_seq_fini,
bpf: Introduce cgroup iter Bugzilla: https://bugzilla.redhat.com/2166911 commit d4ccaf58a8472123ac97e6db03932c375b5c45ba Author: Hao Luo <haoluo@google.com> Date: Wed Aug 24 16:31:13 2022 -0700 bpf: Introduce cgroup iter Cgroup_iter is a type of bpf_iter. It walks over cgroups in four modes: - walking a cgroup's descendants in pre-order. - walking a cgroup's descendants in post-order. - walking a cgroup's ancestors. - process only the given cgroup. When attaching cgroup_iter, one can set a cgroup to the iter_link created from attaching. This cgroup is passed as a file descriptor or cgroup id and serves as the starting point of the walk. If no cgroup is specified, the starting point will be the root cgroup v2. For walking descendants, one can specify the order: either pre-order or post-order. For walking ancestors, the walk starts at the specified cgroup and ends at the root. One can also terminate the walk early by returning 1 from the iter program. Note that because walking cgroup hierarchy holds cgroup_mutex, the iter program is called with cgroup_mutex held. Currently only one session is supported, which means, depending on the volume of data bpf program intends to send to user space, the number of cgroups that can be walked is limited. For example, given the current buffer size is 8 * PAGE_SIZE, if the program sends 64B data for each cgroup, assuming PAGE_SIZE is 4kb, the total number of cgroups that can be walked is 512. This is a limitation of cgroup_iter. If the output data is larger than the kernel buffer size, after all data in the kernel buffer is consumed by user space, the subsequent read() syscall will signal EOPNOTSUPP. In order to work around, the user may have to update their program to reduce the volume of data sent to output. For example, skip some uninteresting cgroups. In future, we may extend bpf_iter flags to allow customizing buffer size. Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220824233117.1312810-2-haoluo@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2023-02-03 13:48:02 +00:00
.seq_priv_size = sizeof(struct cgroup_iter_priv),
};
static int bpf_iter_attach_cgroup(struct bpf_prog *prog,
union bpf_iter_link_info *linfo,
struct bpf_iter_aux_info *aux)
{
int fd = linfo->cgroup.cgroup_fd;
u64 id = linfo->cgroup.cgroup_id;
int order = linfo->cgroup.order;
struct cgroup *cgrp;
if (order != BPF_CGROUP_ITER_DESCENDANTS_PRE &&
order != BPF_CGROUP_ITER_DESCENDANTS_POST &&
order != BPF_CGROUP_ITER_ANCESTORS_UP &&
order != BPF_CGROUP_ITER_SELF_ONLY)
bpf: Introduce cgroup iter Bugzilla: https://bugzilla.redhat.com/2166911 commit d4ccaf58a8472123ac97e6db03932c375b5c45ba Author: Hao Luo <haoluo@google.com> Date: Wed Aug 24 16:31:13 2022 -0700 bpf: Introduce cgroup iter Cgroup_iter is a type of bpf_iter. It walks over cgroups in four modes: - walking a cgroup's descendants in pre-order. - walking a cgroup's descendants in post-order. - walking a cgroup's ancestors. - process only the given cgroup. When attaching cgroup_iter, one can set a cgroup to the iter_link created from attaching. This cgroup is passed as a file descriptor or cgroup id and serves as the starting point of the walk. If no cgroup is specified, the starting point will be the root cgroup v2. For walking descendants, one can specify the order: either pre-order or post-order. For walking ancestors, the walk starts at the specified cgroup and ends at the root. One can also terminate the walk early by returning 1 from the iter program. Note that because walking cgroup hierarchy holds cgroup_mutex, the iter program is called with cgroup_mutex held. Currently only one session is supported, which means, depending on the volume of data bpf program intends to send to user space, the number of cgroups that can be walked is limited. For example, given the current buffer size is 8 * PAGE_SIZE, if the program sends 64B data for each cgroup, assuming PAGE_SIZE is 4kb, the total number of cgroups that can be walked is 512. This is a limitation of cgroup_iter. If the output data is larger than the kernel buffer size, after all data in the kernel buffer is consumed by user space, the subsequent read() syscall will signal EOPNOTSUPP. In order to work around, the user may have to update their program to reduce the volume of data sent to output. For example, skip some uninteresting cgroups. In future, we may extend bpf_iter flags to allow customizing buffer size. Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220824233117.1312810-2-haoluo@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2023-02-03 13:48:02 +00:00
return -EINVAL;
if (fd && id)
return -EINVAL;
if (fd)
cgrp = cgroup_v1v2_get_from_fd(fd);
bpf: Introduce cgroup iter Bugzilla: https://bugzilla.redhat.com/2166911 commit d4ccaf58a8472123ac97e6db03932c375b5c45ba Author: Hao Luo <haoluo@google.com> Date: Wed Aug 24 16:31:13 2022 -0700 bpf: Introduce cgroup iter Cgroup_iter is a type of bpf_iter. It walks over cgroups in four modes: - walking a cgroup's descendants in pre-order. - walking a cgroup's descendants in post-order. - walking a cgroup's ancestors. - process only the given cgroup. When attaching cgroup_iter, one can set a cgroup to the iter_link created from attaching. This cgroup is passed as a file descriptor or cgroup id and serves as the starting point of the walk. If no cgroup is specified, the starting point will be the root cgroup v2. For walking descendants, one can specify the order: either pre-order or post-order. For walking ancestors, the walk starts at the specified cgroup and ends at the root. One can also terminate the walk early by returning 1 from the iter program. Note that because walking cgroup hierarchy holds cgroup_mutex, the iter program is called with cgroup_mutex held. Currently only one session is supported, which means, depending on the volume of data bpf program intends to send to user space, the number of cgroups that can be walked is limited. For example, given the current buffer size is 8 * PAGE_SIZE, if the program sends 64B data for each cgroup, assuming PAGE_SIZE is 4kb, the total number of cgroups that can be walked is 512. This is a limitation of cgroup_iter. If the output data is larger than the kernel buffer size, after all data in the kernel buffer is consumed by user space, the subsequent read() syscall will signal EOPNOTSUPP. In order to work around, the user may have to update their program to reduce the volume of data sent to output. For example, skip some uninteresting cgroups. In future, we may extend bpf_iter flags to allow customizing buffer size. Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220824233117.1312810-2-haoluo@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2023-02-03 13:48:02 +00:00
else if (id)
cgrp = cgroup_get_from_id(id);
else /* walk the entire hierarchy by default. */
cgrp = cgroup_get_from_path("/");
if (IS_ERR(cgrp))
return PTR_ERR(cgrp);
aux->cgroup.start = cgrp;
aux->cgroup.order = order;
return 0;
}
static void bpf_iter_detach_cgroup(struct bpf_iter_aux_info *aux)
{
cgroup_put(aux->cgroup.start);
}
static void bpf_iter_cgroup_show_fdinfo(const struct bpf_iter_aux_info *aux,
struct seq_file *seq)
{
char *buf;
buf = kzalloc(PATH_MAX, GFP_KERNEL);
if (!buf) {
seq_puts(seq, "cgroup_path:\t<unknown>\n");
goto show_order;
}
/* If cgroup_path_ns() fails, buf will be an empty string, cgroup_path
* will print nothing.
*
* Path is in the calling process's cgroup namespace.
*/
cgroup_path_ns(aux->cgroup.start, buf, PATH_MAX,
current->nsproxy->cgroup_ns);
seq_printf(seq, "cgroup_path:\t%s\n", buf);
kfree(buf);
show_order:
if (aux->cgroup.order == BPF_CGROUP_ITER_DESCENDANTS_PRE)
bpf: Introduce cgroup iter Bugzilla: https://bugzilla.redhat.com/2166911 commit d4ccaf58a8472123ac97e6db03932c375b5c45ba Author: Hao Luo <haoluo@google.com> Date: Wed Aug 24 16:31:13 2022 -0700 bpf: Introduce cgroup iter Cgroup_iter is a type of bpf_iter. It walks over cgroups in four modes: - walking a cgroup's descendants in pre-order. - walking a cgroup's descendants in post-order. - walking a cgroup's ancestors. - process only the given cgroup. When attaching cgroup_iter, one can set a cgroup to the iter_link created from attaching. This cgroup is passed as a file descriptor or cgroup id and serves as the starting point of the walk. If no cgroup is specified, the starting point will be the root cgroup v2. For walking descendants, one can specify the order: either pre-order or post-order. For walking ancestors, the walk starts at the specified cgroup and ends at the root. One can also terminate the walk early by returning 1 from the iter program. Note that because walking cgroup hierarchy holds cgroup_mutex, the iter program is called with cgroup_mutex held. Currently only one session is supported, which means, depending on the volume of data bpf program intends to send to user space, the number of cgroups that can be walked is limited. For example, given the current buffer size is 8 * PAGE_SIZE, if the program sends 64B data for each cgroup, assuming PAGE_SIZE is 4kb, the total number of cgroups that can be walked is 512. This is a limitation of cgroup_iter. If the output data is larger than the kernel buffer size, after all data in the kernel buffer is consumed by user space, the subsequent read() syscall will signal EOPNOTSUPP. In order to work around, the user may have to update their program to reduce the volume of data sent to output. For example, skip some uninteresting cgroups. In future, we may extend bpf_iter flags to allow customizing buffer size. Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220824233117.1312810-2-haoluo@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2023-02-03 13:48:02 +00:00
seq_puts(seq, "order: descendants_pre\n");
else if (aux->cgroup.order == BPF_CGROUP_ITER_DESCENDANTS_POST)
bpf: Introduce cgroup iter Bugzilla: https://bugzilla.redhat.com/2166911 commit d4ccaf58a8472123ac97e6db03932c375b5c45ba Author: Hao Luo <haoluo@google.com> Date: Wed Aug 24 16:31:13 2022 -0700 bpf: Introduce cgroup iter Cgroup_iter is a type of bpf_iter. It walks over cgroups in four modes: - walking a cgroup's descendants in pre-order. - walking a cgroup's descendants in post-order. - walking a cgroup's ancestors. - process only the given cgroup. When attaching cgroup_iter, one can set a cgroup to the iter_link created from attaching. This cgroup is passed as a file descriptor or cgroup id and serves as the starting point of the walk. If no cgroup is specified, the starting point will be the root cgroup v2. For walking descendants, one can specify the order: either pre-order or post-order. For walking ancestors, the walk starts at the specified cgroup and ends at the root. One can also terminate the walk early by returning 1 from the iter program. Note that because walking cgroup hierarchy holds cgroup_mutex, the iter program is called with cgroup_mutex held. Currently only one session is supported, which means, depending on the volume of data bpf program intends to send to user space, the number of cgroups that can be walked is limited. For example, given the current buffer size is 8 * PAGE_SIZE, if the program sends 64B data for each cgroup, assuming PAGE_SIZE is 4kb, the total number of cgroups that can be walked is 512. This is a limitation of cgroup_iter. If the output data is larger than the kernel buffer size, after all data in the kernel buffer is consumed by user space, the subsequent read() syscall will signal EOPNOTSUPP. In order to work around, the user may have to update their program to reduce the volume of data sent to output. For example, skip some uninteresting cgroups. In future, we may extend bpf_iter flags to allow customizing buffer size. Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220824233117.1312810-2-haoluo@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2023-02-03 13:48:02 +00:00
seq_puts(seq, "order: descendants_post\n");
else if (aux->cgroup.order == BPF_CGROUP_ITER_ANCESTORS_UP)
bpf: Introduce cgroup iter Bugzilla: https://bugzilla.redhat.com/2166911 commit d4ccaf58a8472123ac97e6db03932c375b5c45ba Author: Hao Luo <haoluo@google.com> Date: Wed Aug 24 16:31:13 2022 -0700 bpf: Introduce cgroup iter Cgroup_iter is a type of bpf_iter. It walks over cgroups in four modes: - walking a cgroup's descendants in pre-order. - walking a cgroup's descendants in post-order. - walking a cgroup's ancestors. - process only the given cgroup. When attaching cgroup_iter, one can set a cgroup to the iter_link created from attaching. This cgroup is passed as a file descriptor or cgroup id and serves as the starting point of the walk. If no cgroup is specified, the starting point will be the root cgroup v2. For walking descendants, one can specify the order: either pre-order or post-order. For walking ancestors, the walk starts at the specified cgroup and ends at the root. One can also terminate the walk early by returning 1 from the iter program. Note that because walking cgroup hierarchy holds cgroup_mutex, the iter program is called with cgroup_mutex held. Currently only one session is supported, which means, depending on the volume of data bpf program intends to send to user space, the number of cgroups that can be walked is limited. For example, given the current buffer size is 8 * PAGE_SIZE, if the program sends 64B data for each cgroup, assuming PAGE_SIZE is 4kb, the total number of cgroups that can be walked is 512. This is a limitation of cgroup_iter. If the output data is larger than the kernel buffer size, after all data in the kernel buffer is consumed by user space, the subsequent read() syscall will signal EOPNOTSUPP. In order to work around, the user may have to update their program to reduce the volume of data sent to output. For example, skip some uninteresting cgroups. In future, we may extend bpf_iter flags to allow customizing buffer size. Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220824233117.1312810-2-haoluo@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2023-02-03 13:48:02 +00:00
seq_puts(seq, "order: ancestors_up\n");
else /* BPF_CGROUP_ITER_SELF_ONLY */
bpf: Introduce cgroup iter Bugzilla: https://bugzilla.redhat.com/2166911 commit d4ccaf58a8472123ac97e6db03932c375b5c45ba Author: Hao Luo <haoluo@google.com> Date: Wed Aug 24 16:31:13 2022 -0700 bpf: Introduce cgroup iter Cgroup_iter is a type of bpf_iter. It walks over cgroups in four modes: - walking a cgroup's descendants in pre-order. - walking a cgroup's descendants in post-order. - walking a cgroup's ancestors. - process only the given cgroup. When attaching cgroup_iter, one can set a cgroup to the iter_link created from attaching. This cgroup is passed as a file descriptor or cgroup id and serves as the starting point of the walk. If no cgroup is specified, the starting point will be the root cgroup v2. For walking descendants, one can specify the order: either pre-order or post-order. For walking ancestors, the walk starts at the specified cgroup and ends at the root. One can also terminate the walk early by returning 1 from the iter program. Note that because walking cgroup hierarchy holds cgroup_mutex, the iter program is called with cgroup_mutex held. Currently only one session is supported, which means, depending on the volume of data bpf program intends to send to user space, the number of cgroups that can be walked is limited. For example, given the current buffer size is 8 * PAGE_SIZE, if the program sends 64B data for each cgroup, assuming PAGE_SIZE is 4kb, the total number of cgroups that can be walked is 512. This is a limitation of cgroup_iter. If the output data is larger than the kernel buffer size, after all data in the kernel buffer is consumed by user space, the subsequent read() syscall will signal EOPNOTSUPP. In order to work around, the user may have to update their program to reduce the volume of data sent to output. For example, skip some uninteresting cgroups. In future, we may extend bpf_iter flags to allow customizing buffer size. Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220824233117.1312810-2-haoluo@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2023-02-03 13:48:02 +00:00
seq_puts(seq, "order: self_only\n");
}
static int bpf_iter_cgroup_fill_link_info(const struct bpf_iter_aux_info *aux,
struct bpf_link_info *info)
{
info->iter.cgroup.order = aux->cgroup.order;
info->iter.cgroup.cgroup_id = cgroup_id(aux->cgroup.start);
return 0;
}
DEFINE_BPF_ITER_FUNC(cgroup, struct bpf_iter_meta *meta,
struct cgroup *cgroup)
static struct bpf_iter_reg bpf_cgroup_reg_info = {
.target = "cgroup",
.feature = BPF_ITER_RESCHED,
.attach_target = bpf_iter_attach_cgroup,
.detach_target = bpf_iter_detach_cgroup,
.show_fdinfo = bpf_iter_cgroup_show_fdinfo,
.fill_link_info = bpf_iter_cgroup_fill_link_info,
.ctx_arg_info_size = 1,
.ctx_arg_info = {
{ offsetof(struct bpf_iter__cgroup, cgroup),
bpf: Let verifier consider {task,cgroup} is trusted in bpf_iter_reg JIRA: https://issues.redhat.com/browse/RHEL-23643 commit 0de4f50de25af79c2a46db55d70cdbd8f985c6d1 Author: Chuyi Zhou <zhouchuyi@bytedance.com> Date: Tue Nov 7 21:22:03 2023 +0800 bpf: Let verifier consider {task,cgroup} is trusted in bpf_iter_reg BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) in verifier.c wanted to teach BPF verifier that bpf_iter__task -> task is a trusted ptr. But it doesn't work well. The reason is, bpf_iter__task -> task would go through btf_ctx_access() which enforces the reg_type of 'task' is ctx_arg_info->reg_type, and in task_iter.c, we actually explicitly declare that the ctx_arg_info->reg_type is PTR_TO_BTF_ID_OR_NULL. Actually we have a previous case like this[1] where PTR_TRUSTED is added to the arg flag for map_iter. This patch sets ctx_arg_info->reg_type is PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED in task_reg_info. Similarly, bpf_cgroup_reg_info -> cgroup is also PTR_TRUSTED since we are under the protection of cgroup_mutex and we would check cgroup_is_dead() in __cgroup_iter_seq_show(). This patch is to improve the user experience of the newly introduced bpf_iter_css_task kfunc before hitting the mainline. The Fixes tag is pointing to the commit introduced the bpf_iter_css_task kfunc. Link[1]:https://lore.kernel.org/all/20230706133932.45883-3-aspsk@isovalent.com/ Fixes: 9c66dc94b62a ("bpf: Introduce css_task open-coded iterator kfuncs") Signed-off-by: Chuyi Zhou <zhouchuyi@bytedance.com> Acked-by: Yonghong Song <yonghong.song@linux.dev> Link: https://lore.kernel.org/r/20231107132204.912120-2-zhouchuyi@bytedance.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2024-03-06 11:04:07 +00:00
PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
bpf: Introduce cgroup iter Bugzilla: https://bugzilla.redhat.com/2166911 commit d4ccaf58a8472123ac97e6db03932c375b5c45ba Author: Hao Luo <haoluo@google.com> Date: Wed Aug 24 16:31:13 2022 -0700 bpf: Introduce cgroup iter Cgroup_iter is a type of bpf_iter. It walks over cgroups in four modes: - walking a cgroup's descendants in pre-order. - walking a cgroup's descendants in post-order. - walking a cgroup's ancestors. - process only the given cgroup. When attaching cgroup_iter, one can set a cgroup to the iter_link created from attaching. This cgroup is passed as a file descriptor or cgroup id and serves as the starting point of the walk. If no cgroup is specified, the starting point will be the root cgroup v2. For walking descendants, one can specify the order: either pre-order or post-order. For walking ancestors, the walk starts at the specified cgroup and ends at the root. One can also terminate the walk early by returning 1 from the iter program. Note that because walking cgroup hierarchy holds cgroup_mutex, the iter program is called with cgroup_mutex held. Currently only one session is supported, which means, depending on the volume of data bpf program intends to send to user space, the number of cgroups that can be walked is limited. For example, given the current buffer size is 8 * PAGE_SIZE, if the program sends 64B data for each cgroup, assuming PAGE_SIZE is 4kb, the total number of cgroups that can be walked is 512. This is a limitation of cgroup_iter. If the output data is larger than the kernel buffer size, after all data in the kernel buffer is consumed by user space, the subsequent read() syscall will signal EOPNOTSUPP. In order to work around, the user may have to update their program to reduce the volume of data sent to output. For example, skip some uninteresting cgroups. In future, we may extend bpf_iter flags to allow customizing buffer size. Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Tejun Heo <tj@kernel.org> Signed-off-by: Hao Luo <haoluo@google.com> Link: https://lore.kernel.org/r/20220824233117.1312810-2-haoluo@google.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2023-02-03 13:48:02 +00:00
},
.seq_info = &cgroup_iter_seq_info,
};
static int __init bpf_cgroup_iter_init(void)
{
bpf_cgroup_reg_info.ctx_arg_info[0].btf_id = bpf_cgroup_btf_id[0];
return bpf_iter_reg_target(&bpf_cgroup_reg_info);
}
late_initcall(bpf_cgroup_iter_init);
struct bpf_iter_css {
__u64 __opaque[3];
} __attribute__((aligned(8)));
struct bpf_iter_css_kern {
struct cgroup_subsys_state *start;
struct cgroup_subsys_state *pos;
unsigned int flags;
} __attribute__((aligned(8)));
bpf: Add __bpf_kfunc_{start,end}_defs macros JIRA: https://issues.redhat.com/browse/RHEL-23643 Upstream Status: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git Conflicts: missing xdp commits, missing vma_task iterator commit 391145ba2accc48b596f3d438af1a6255b62a555 Author: Dave Marchevsky <davemarchevsky@fb.com> Date: Tue Oct 31 14:56:24 2023 -0700 bpf: Add __bpf_kfunc_{start,end}_defs macros BPF kfuncs are meant to be called from BPF programs. Accordingly, most kfuncs are not called from anywhere in the kernel, which the -Wmissing-prototypes warning is unhappy about. We've peppered __diag_ignore_all("-Wmissing-prototypes", ... everywhere kfuncs are defined in the codebase to suppress this warning. This patch adds two macros meant to bound one or many kfunc definitions. All existing kfunc definitions which use these __diag calls to suppress -Wmissing-prototypes are migrated to use the newly-introduced macros. A new __diag_ignore_all - for "-Wmissing-declarations" - is added to the __bpf_kfunc_start_defs macro based on feedback from Andrii on an earlier version of this patch [0] and another recent mailing list thread [1]. In the future we might need to ignore different warnings or do other kfunc-specific things. This change will make it easier to make such modifications for all kfunc defs. [0]: https://lore.kernel.org/bpf/CAEf4BzaE5dRWtK6RPLnjTW-MW9sx9K3Fn6uwqCTChK2Dcb1Xig@mail.gmail.com/ [1]: https://lore.kernel.org/bpf/ZT+2qCc%2FaXep0%2FLf@krava/ Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Suggested-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Cc: Jiri Olsa <olsajiri@gmail.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Acked-by: David Vernet <void@manifault.com> Acked-by: Yafang Shao <laoar.shao@gmail.com> Link: https://lore.kernel.org/r/20231031215625.2343848-1-davemarchevsky@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2024-03-06 12:42:29 +00:00
__bpf_kfunc_start_defs();
__bpf_kfunc int bpf_iter_css_new(struct bpf_iter_css *it,
struct cgroup_subsys_state *start, unsigned int flags)
{
struct bpf_iter_css_kern *kit = (void *)it;
BUILD_BUG_ON(sizeof(struct bpf_iter_css_kern) > sizeof(struct bpf_iter_css));
BUILD_BUG_ON(__alignof__(struct bpf_iter_css_kern) != __alignof__(struct bpf_iter_css));
kit->start = NULL;
switch (flags) {
case BPF_CGROUP_ITER_DESCENDANTS_PRE:
case BPF_CGROUP_ITER_DESCENDANTS_POST:
case BPF_CGROUP_ITER_ANCESTORS_UP:
break;
default:
return -EINVAL;
}
kit->start = start;
kit->pos = NULL;
kit->flags = flags;
return 0;
}
__bpf_kfunc struct cgroup_subsys_state *bpf_iter_css_next(struct bpf_iter_css *it)
{
struct bpf_iter_css_kern *kit = (void *)it;
if (!kit->start)
return NULL;
switch (kit->flags) {
case BPF_CGROUP_ITER_DESCENDANTS_PRE:
kit->pos = css_next_descendant_pre(kit->pos, kit->start);
break;
case BPF_CGROUP_ITER_DESCENDANTS_POST:
kit->pos = css_next_descendant_post(kit->pos, kit->start);
break;
case BPF_CGROUP_ITER_ANCESTORS_UP:
kit->pos = kit->pos ? kit->pos->parent : kit->start;
}
return kit->pos;
}
__bpf_kfunc void bpf_iter_css_destroy(struct bpf_iter_css *it)
{
}
bpf: Add __bpf_kfunc_{start,end}_defs macros JIRA: https://issues.redhat.com/browse/RHEL-23643 Upstream Status: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git Conflicts: missing xdp commits, missing vma_task iterator commit 391145ba2accc48b596f3d438af1a6255b62a555 Author: Dave Marchevsky <davemarchevsky@fb.com> Date: Tue Oct 31 14:56:24 2023 -0700 bpf: Add __bpf_kfunc_{start,end}_defs macros BPF kfuncs are meant to be called from BPF programs. Accordingly, most kfuncs are not called from anywhere in the kernel, which the -Wmissing-prototypes warning is unhappy about. We've peppered __diag_ignore_all("-Wmissing-prototypes", ... everywhere kfuncs are defined in the codebase to suppress this warning. This patch adds two macros meant to bound one or many kfunc definitions. All existing kfunc definitions which use these __diag calls to suppress -Wmissing-prototypes are migrated to use the newly-introduced macros. A new __diag_ignore_all - for "-Wmissing-declarations" - is added to the __bpf_kfunc_start_defs macro based on feedback from Andrii on an earlier version of this patch [0] and another recent mailing list thread [1]. In the future we might need to ignore different warnings or do other kfunc-specific things. This change will make it easier to make such modifications for all kfunc defs. [0]: https://lore.kernel.org/bpf/CAEf4BzaE5dRWtK6RPLnjTW-MW9sx9K3Fn6uwqCTChK2Dcb1Xig@mail.gmail.com/ [1]: https://lore.kernel.org/bpf/ZT+2qCc%2FaXep0%2FLf@krava/ Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Suggested-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Cc: Jiri Olsa <olsajiri@gmail.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Acked-by: David Vernet <void@manifault.com> Acked-by: Yafang Shao <laoar.shao@gmail.com> Link: https://lore.kernel.org/r/20231031215625.2343848-1-davemarchevsky@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2024-03-06 12:42:29 +00:00
__bpf_kfunc_end_defs();