Centos-kernel-stream-9/include/linux/bpf_local_storage.h

203 lines
6.5 KiB
C
Raw Permalink Normal View History

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (c) 2019 Facebook
* Copyright 2020 Google LLC.
*/
#ifndef _BPF_LOCAL_STORAGE_H
#define _BPF_LOCAL_STORAGE_H
#include <linux/bpf.h>
net: Don't include filter.h from net/sock.h Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=2101792 Conflicts: drivers/infiniband/core/cache.c - adjusted context conflict due to missing b74525f21e33ab ("RDMA/core: Delete useless module.h include") drivers/infiniband/hw/mlx5/fs.c - missing upstream commit ffa501ef196312 ("RDMA/mlx5: Add steering support in optional flow counters") adding net/inet_ecn.h. Without inet_ecn.h missing declarations for ether_addr_copy() and is_multicast_ether_addr() We add net/inet_ecn.h include in this commit. drivers/net/amt.c - Unmerged because file missing in RHEL Upstream commit(s): commit b6459415b384cb829f0b2a4268f211c789f6cf0b Author: Jakub Kicinski <kuba@kernel.org> Date: Tue Dec 28 16:49:13 2021 -0800 net: Don't include filter.h from net/sock.h sock.h is pretty heavily used (5k objects rebuilt on x86 after it's touched). We can drop the include of filter.h from it and add a forward declaration of struct sk_filter instead. This decreases the number of rebuilt objects when bpf.h is touched from ~5k to ~1k. There's a lot of missing includes this was masking. Primarily in networking tho, this time. Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Marc Kleine-Budde <mkl@pengutronix.de> Acked-by: Florian Fainelli <f.fainelli@gmail.com> Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com> Acked-by: Stefano Garzarella <sgarzare@redhat.com> Link: https://lore.kernel.org/bpf/20211229004913.513372-1-kuba@kernel.org Signed-off-by: Petr Oros <poros@redhat.com>
2022-07-12 10:07:24 +00:00
#include <linux/filter.h>
#include <linux/rculist.h>
#include <linux/list.h>
#include <linux/hash.h>
#include <linux/types.h>
bpf: Use bpf_mem_cache_alloc/free in bpf_local_storage_elem Bugzilla: https://bugzilla.redhat.com/2221599 commit 08a7ce384e33e53e0732c500a8af67a73f8fceca Author: Martin KaFai Lau <martin.lau@kernel.org> Date: Wed Mar 22 14:52:43 2023 -0700 bpf: Use bpf_mem_cache_alloc/free in bpf_local_storage_elem This patch uses bpf_mem_alloc for the task and cgroup local storage that the bpf prog can easily get a hold of the storage owner's PTR_TO_BTF_ID. eg. bpf_get_current_task_btf() can be used in some of the kmalloc code path which will cause deadlock/recursion. bpf_mem_cache_alloc is deadlock free and will solve a legit use case in [1]. For sk storage, its batch creation benchmark shows a few percent regression when the sk create/destroy batch size is larger than 32. The sk creation/destruction happens much more often and depends on external traffic. Considering it is hypothetical to be able to cause deadlock with sk storage, it can cross the bridge to use bpf_mem_alloc till a legit (ie. useful) use case comes up. For inode storage, bpf_local_storage_destroy() is called before waiting for a rcu gp and its memory cannot be reused immediately. inode stays with kmalloc/kfree after the rcu [or tasks_trace] gp. A 'bool bpf_ma' argument is added to bpf_local_storage_map_alloc(). Only task and cgroup storage have 'bpf_ma == true' which means to use bpf_mem_cache_alloc/free(). This patch only changes selem to use bpf_mem_alloc for task and cgroup. The next patch will change the local_storage to use bpf_mem_alloc also for task and cgroup. Here is some more details on the changes: * memory allocation: After bpf_mem_cache_alloc(), the SDATA(selem)->data is zero-ed because bpf_mem_cache_alloc() could return a reused selem. It is to keep the existing bpf_map_kzalloc() behavior. Only SDATA(selem)->data is zero-ed. SDATA(selem)->data is the visible part to the bpf prog. No need to use zero_map_value() to do the zeroing because bpf_selem_free(..., reuse_now = true) ensures no bpf prog is using the selem before returning the selem through bpf_mem_cache_free(). For the internal fields of selem, they will be initialized when linking to the new smap and the new local_storage. When 'bpf_ma == false', nothing changes in this patch. It will stay with the bpf_map_kzalloc(). * memory free: The bpf_selem_free() and bpf_selem_free_rcu() are modified to handle the bpf_ma == true case. For the common selem free path where its owner is also being destroyed, the mem is freed in bpf_local_storage_destroy(), the owner (task and cgroup) has gone through a rcu gp. The memory can be reused immediately, so bpf_local_storage_destroy() will call bpf_selem_free(..., reuse_now = true) which will do bpf_mem_cache_free() for immediate reuse consideration. An exception is the delete elem code path. The delete elem code path is called from the helper bpf_*_storage_delete() and the syscall bpf_map_delete_elem(). This path is an unusual case for local storage because the common use case is to have the local storage staying with its owner life time so that the bpf prog and the user space does not have to monitor the owner's destruction. For the delete elem path, the selem cannot be reused immediately because there could be bpf prog using it. It will call bpf_selem_free(..., reuse_now = false) and it will wait for a rcu tasks trace gp before freeing the elem. The rcu callback is changed to do bpf_mem_cache_raw_free() instead of kfree(). When 'bpf_ma == false', it should be the same as before. __bpf_selem_free() is added to do the kfree_rcu and call_tasks_trace_rcu(). A few words on the 'reuse_now == true'. When 'reuse_now == true', it is still racing with bpf_local_storage_map_free which is under rcu protection, so it still needs to wait for a rcu gp instead of kfree(). Otherwise, the selem may be reused by slab for a totally different struct while the bpf_local_storage_map_free() is still using it (as a rcu reader). For the inode case, there may be other rcu readers also. In short, when bpf_ma == false and reuse_now == true => vanilla rcu. [1]: https://lore.kernel.org/bpf/20221118190109.1512674-1-namhyung@kernel.org/ Cc: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Link: https://lore.kernel.org/r/20230322215246.1675516-3-martin.lau@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2023-07-11 07:20:46 +00:00
#include <linux/bpf_mem_alloc.h>
#include <uapi/linux/btf.h>
#define BPF_LOCAL_STORAGE_CACHE_SIZE 16
bpf: Allow bpf_local_storage to be used by sleepable programs Bugzilla: https://bugzilla.redhat.com/2069046 Upstream Status: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git commit 0fe4b381a59ebc53522fce579b281a67a9e1bee6 Author: KP Singh <kpsingh@kernel.org> Date: Fri Dec 24 15:29:15 2021 +0000 bpf: Allow bpf_local_storage to be used by sleepable programs Other maps like hashmaps are already available to sleepable programs. Sleepable BPF programs run under trace RCU. Allow task, sk and inode storage to be used from sleepable programs. This allows sleepable and non-sleepable programs to provide shareable annotations on kernel objects. Sleepable programs run in trace RCU where as non-sleepable programs run in a normal RCU critical section i.e. __bpf_prog_enter{_sleepable} and __bpf_prog_exit{_sleepable}) (rcu_read_lock or rcu_read_lock_trace). In order to make the local storage maps accessible to both sleepable and non-sleepable programs, one needs to call both call_rcu_tasks_trace and call_rcu to wait for both trace and classical RCU grace periods to expire before freeing memory. Paul's work on call_rcu_tasks_trace allows us to have per CPU queueing for call_rcu_tasks_trace. This behaviour can be achieved by setting rcupdate.rcu_task_enqueue_lim=<num_cpus> boot parameter. In light of these new performance changes and to keep the local storage code simple, avoid adding a new flag for sleepable maps / local storage to select the RCU synchronization (trace / classical). Also, update the dereferencing of the pointers to use rcu_derference_check (with either the trace or normal RCU locks held) with a common bpf_rcu_lock_held helper method. Signed-off-by: KP Singh <kpsingh@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20211224152916.1550677-2-kpsingh@kernel.org Signed-off-by: Artem Savkov <asavkov@redhat.com>
2022-06-10 13:12:53 +00:00
#define bpf_rcu_lock_held() \
(rcu_read_lock_held() || rcu_read_lock_trace_held() || \
rcu_read_lock_bh_held())
struct bpf_local_storage_map_bucket {
struct hlist_head list;
raw_spinlock_t lock;
};
/* Thp map is not the primary owner of a bpf_local_storage_elem.
* Instead, the container object (eg. sk->sk_bpf_storage) is.
*
* The map (bpf_local_storage_map) is for two purposes
* 1. Define the size of the "local storage". It is
* the map's value_size.
*
* 2. Maintain a list to keep track of all elems such
* that they can be cleaned up during the map destruction.
*
* When a bpf local storage is being looked up for a
* particular object, the "bpf_map" pointer is actually used
* as the "key" to search in the list of elem in
* the respective bpf_local_storage owned by the object.
*
* e.g. sk->sk_bpf_storage is the mini-map with the "bpf_map" pointer
* as the searching key.
*/
struct bpf_local_storage_map {
struct bpf_map map;
/* Lookup elem does not require accessing the map.
*
* Updating/Deleting requires a bucket lock to
* link/unlink the elem from the map. Having
* multiple buckets to improve contention.
*/
struct bpf_local_storage_map_bucket *buckets;
u32 bucket_log;
u16 elem_size;
u16 cache_idx;
bpf: Use bpf_mem_cache_alloc/free in bpf_local_storage_elem Bugzilla: https://bugzilla.redhat.com/2221599 commit 08a7ce384e33e53e0732c500a8af67a73f8fceca Author: Martin KaFai Lau <martin.lau@kernel.org> Date: Wed Mar 22 14:52:43 2023 -0700 bpf: Use bpf_mem_cache_alloc/free in bpf_local_storage_elem This patch uses bpf_mem_alloc for the task and cgroup local storage that the bpf prog can easily get a hold of the storage owner's PTR_TO_BTF_ID. eg. bpf_get_current_task_btf() can be used in some of the kmalloc code path which will cause deadlock/recursion. bpf_mem_cache_alloc is deadlock free and will solve a legit use case in [1]. For sk storage, its batch creation benchmark shows a few percent regression when the sk create/destroy batch size is larger than 32. The sk creation/destruction happens much more often and depends on external traffic. Considering it is hypothetical to be able to cause deadlock with sk storage, it can cross the bridge to use bpf_mem_alloc till a legit (ie. useful) use case comes up. For inode storage, bpf_local_storage_destroy() is called before waiting for a rcu gp and its memory cannot be reused immediately. inode stays with kmalloc/kfree after the rcu [or tasks_trace] gp. A 'bool bpf_ma' argument is added to bpf_local_storage_map_alloc(). Only task and cgroup storage have 'bpf_ma == true' which means to use bpf_mem_cache_alloc/free(). This patch only changes selem to use bpf_mem_alloc for task and cgroup. The next patch will change the local_storage to use bpf_mem_alloc also for task and cgroup. Here is some more details on the changes: * memory allocation: After bpf_mem_cache_alloc(), the SDATA(selem)->data is zero-ed because bpf_mem_cache_alloc() could return a reused selem. It is to keep the existing bpf_map_kzalloc() behavior. Only SDATA(selem)->data is zero-ed. SDATA(selem)->data is the visible part to the bpf prog. No need to use zero_map_value() to do the zeroing because bpf_selem_free(..., reuse_now = true) ensures no bpf prog is using the selem before returning the selem through bpf_mem_cache_free(). For the internal fields of selem, they will be initialized when linking to the new smap and the new local_storage. When 'bpf_ma == false', nothing changes in this patch. It will stay with the bpf_map_kzalloc(). * memory free: The bpf_selem_free() and bpf_selem_free_rcu() are modified to handle the bpf_ma == true case. For the common selem free path where its owner is also being destroyed, the mem is freed in bpf_local_storage_destroy(), the owner (task and cgroup) has gone through a rcu gp. The memory can be reused immediately, so bpf_local_storage_destroy() will call bpf_selem_free(..., reuse_now = true) which will do bpf_mem_cache_free() for immediate reuse consideration. An exception is the delete elem code path. The delete elem code path is called from the helper bpf_*_storage_delete() and the syscall bpf_map_delete_elem(). This path is an unusual case for local storage because the common use case is to have the local storage staying with its owner life time so that the bpf prog and the user space does not have to monitor the owner's destruction. For the delete elem path, the selem cannot be reused immediately because there could be bpf prog using it. It will call bpf_selem_free(..., reuse_now = false) and it will wait for a rcu tasks trace gp before freeing the elem. The rcu callback is changed to do bpf_mem_cache_raw_free() instead of kfree(). When 'bpf_ma == false', it should be the same as before. __bpf_selem_free() is added to do the kfree_rcu and call_tasks_trace_rcu(). A few words on the 'reuse_now == true'. When 'reuse_now == true', it is still racing with bpf_local_storage_map_free which is under rcu protection, so it still needs to wait for a rcu gp instead of kfree(). Otherwise, the selem may be reused by slab for a totally different struct while the bpf_local_storage_map_free() is still using it (as a rcu reader). For the inode case, there may be other rcu readers also. In short, when bpf_ma == false and reuse_now == true => vanilla rcu. [1]: https://lore.kernel.org/bpf/20221118190109.1512674-1-namhyung@kernel.org/ Cc: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Link: https://lore.kernel.org/r/20230322215246.1675516-3-martin.lau@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2023-07-11 07:20:46 +00:00
struct bpf_mem_alloc selem_ma;
bpf: Use bpf_mem_cache_alloc/free for bpf_local_storage Bugzilla: https://bugzilla.redhat.com/2221599 commit 6ae9d5e99e1dd26babdd9502759fa25a3fd348ad Author: Martin KaFai Lau <martin.lau@kernel.org> Date: Wed Mar 22 14:52:44 2023 -0700 bpf: Use bpf_mem_cache_alloc/free for bpf_local_storage This patch uses bpf_mem_cache_alloc/free for allocating and freeing bpf_local_storage for task and cgroup storage. The changes are similar to the previous patch. A few things that worth to mention for bpf_local_storage: The local_storage is freed when the last selem is deleted. Before deleting a selem from local_storage, it needs to retrieve the local_storage->smap because the bpf_selem_unlink_storage_nolock() may have set it to NULL. Note that local_storage->smap may have already been NULL when the selem created this local_storage has been removed. In this case, call_rcu will be used to free the local_storage. Also, the bpf_ma (true or false) value is needed before calling bpf_local_storage_free(). The bpf_ma can either be obtained from the local_storage->smap (if available) or any of its selem's smap. A new helper check_storage_bpf_ma() is added to obtain bpf_ma for a deleting bpf_local_storage. When bpf_local_storage_alloc getting a reused memory, all fields are either in the correct values or will be initialized. 'cache[]' must already be all NULLs. 'list' must be empty. Others will be initialized. Cc: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Link: https://lore.kernel.org/r/20230322215246.1675516-4-martin.lau@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2023-07-11 07:20:46 +00:00
struct bpf_mem_alloc storage_ma;
bpf: Use bpf_mem_cache_alloc/free in bpf_local_storage_elem Bugzilla: https://bugzilla.redhat.com/2221599 commit 08a7ce384e33e53e0732c500a8af67a73f8fceca Author: Martin KaFai Lau <martin.lau@kernel.org> Date: Wed Mar 22 14:52:43 2023 -0700 bpf: Use bpf_mem_cache_alloc/free in bpf_local_storage_elem This patch uses bpf_mem_alloc for the task and cgroup local storage that the bpf prog can easily get a hold of the storage owner's PTR_TO_BTF_ID. eg. bpf_get_current_task_btf() can be used in some of the kmalloc code path which will cause deadlock/recursion. bpf_mem_cache_alloc is deadlock free and will solve a legit use case in [1]. For sk storage, its batch creation benchmark shows a few percent regression when the sk create/destroy batch size is larger than 32. The sk creation/destruction happens much more often and depends on external traffic. Considering it is hypothetical to be able to cause deadlock with sk storage, it can cross the bridge to use bpf_mem_alloc till a legit (ie. useful) use case comes up. For inode storage, bpf_local_storage_destroy() is called before waiting for a rcu gp and its memory cannot be reused immediately. inode stays with kmalloc/kfree after the rcu [or tasks_trace] gp. A 'bool bpf_ma' argument is added to bpf_local_storage_map_alloc(). Only task and cgroup storage have 'bpf_ma == true' which means to use bpf_mem_cache_alloc/free(). This patch only changes selem to use bpf_mem_alloc for task and cgroup. The next patch will change the local_storage to use bpf_mem_alloc also for task and cgroup. Here is some more details on the changes: * memory allocation: After bpf_mem_cache_alloc(), the SDATA(selem)->data is zero-ed because bpf_mem_cache_alloc() could return a reused selem. It is to keep the existing bpf_map_kzalloc() behavior. Only SDATA(selem)->data is zero-ed. SDATA(selem)->data is the visible part to the bpf prog. No need to use zero_map_value() to do the zeroing because bpf_selem_free(..., reuse_now = true) ensures no bpf prog is using the selem before returning the selem through bpf_mem_cache_free(). For the internal fields of selem, they will be initialized when linking to the new smap and the new local_storage. When 'bpf_ma == false', nothing changes in this patch. It will stay with the bpf_map_kzalloc(). * memory free: The bpf_selem_free() and bpf_selem_free_rcu() are modified to handle the bpf_ma == true case. For the common selem free path where its owner is also being destroyed, the mem is freed in bpf_local_storage_destroy(), the owner (task and cgroup) has gone through a rcu gp. The memory can be reused immediately, so bpf_local_storage_destroy() will call bpf_selem_free(..., reuse_now = true) which will do bpf_mem_cache_free() for immediate reuse consideration. An exception is the delete elem code path. The delete elem code path is called from the helper bpf_*_storage_delete() and the syscall bpf_map_delete_elem(). This path is an unusual case for local storage because the common use case is to have the local storage staying with its owner life time so that the bpf prog and the user space does not have to monitor the owner's destruction. For the delete elem path, the selem cannot be reused immediately because there could be bpf prog using it. It will call bpf_selem_free(..., reuse_now = false) and it will wait for a rcu tasks trace gp before freeing the elem. The rcu callback is changed to do bpf_mem_cache_raw_free() instead of kfree(). When 'bpf_ma == false', it should be the same as before. __bpf_selem_free() is added to do the kfree_rcu and call_tasks_trace_rcu(). A few words on the 'reuse_now == true'. When 'reuse_now == true', it is still racing with bpf_local_storage_map_free which is under rcu protection, so it still needs to wait for a rcu gp instead of kfree(). Otherwise, the selem may be reused by slab for a totally different struct while the bpf_local_storage_map_free() is still using it (as a rcu reader). For the inode case, there may be other rcu readers also. In short, when bpf_ma == false and reuse_now == true => vanilla rcu. [1]: https://lore.kernel.org/bpf/20221118190109.1512674-1-namhyung@kernel.org/ Cc: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Link: https://lore.kernel.org/r/20230322215246.1675516-3-martin.lau@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2023-07-11 07:20:46 +00:00
bool bpf_ma;
};
struct bpf_local_storage_data {
/* smap is used as the searching key when looking up
* from the object's bpf_local_storage.
*
* Put it in the same cacheline as the data to minimize
* the number of cachelines accessed during the cache hit case.
*/
struct bpf_local_storage_map __rcu *smap;
u8 data[] __aligned(8);
};
/* Linked to bpf_local_storage and bpf_local_storage_map */
struct bpf_local_storage_elem {
struct hlist_node map_node; /* Linked to bpf_local_storage_map */
struct hlist_node snode; /* Linked to bpf_local_storage */
struct bpf_local_storage __rcu *local_storage;
struct rcu_head rcu;
/* 8 bytes hole */
/* The data is stored in another cacheline to minimize
* the number of cachelines access during a cache hit.
*/
struct bpf_local_storage_data sdata ____cacheline_aligned;
};
struct bpf_local_storage {
struct bpf_local_storage_data __rcu *cache[BPF_LOCAL_STORAGE_CACHE_SIZE];
struct bpf_local_storage_map __rcu *smap;
struct hlist_head list; /* List of bpf_local_storage_elem */
void *owner; /* The object that owns the above "list" of
* bpf_local_storage_elem.
*/
struct rcu_head rcu;
raw_spinlock_t lock; /* Protect adding/removing from the "list" */
};
/* U16_MAX is much more than enough for sk local storage
* considering a tcp_sock is ~2k.
*/
#define BPF_LOCAL_STORAGE_MAX_VALUE_SIZE \
min_t(u32, \
(KMALLOC_MAX_SIZE - MAX_BPF_STACK - \
sizeof(struct bpf_local_storage_elem)), \
(U16_MAX - sizeof(struct bpf_local_storage_elem)))
#define SELEM(_SDATA) \
container_of((_SDATA), struct bpf_local_storage_elem, sdata)
#define SDATA(_SELEM) (&(_SELEM)->sdata)
#define BPF_LOCAL_STORAGE_CACHE_SIZE 16
struct bpf_local_storage_cache {
spinlock_t idx_lock;
u64 idx_usage_counts[BPF_LOCAL_STORAGE_CACHE_SIZE];
};
#define DEFINE_BPF_STORAGE_CACHE(name) \
static struct bpf_local_storage_cache name = { \
.idx_lock = __SPIN_LOCK_UNLOCKED(name.idx_lock), \
}
/* Helper functions for bpf_local_storage */
int bpf_local_storage_map_alloc_check(union bpf_attr *attr);
struct bpf_map *
bpf_local_storage_map_alloc(union bpf_attr *attr,
bpf: Use bpf_mem_cache_alloc/free in bpf_local_storage_elem Bugzilla: https://bugzilla.redhat.com/2221599 commit 08a7ce384e33e53e0732c500a8af67a73f8fceca Author: Martin KaFai Lau <martin.lau@kernel.org> Date: Wed Mar 22 14:52:43 2023 -0700 bpf: Use bpf_mem_cache_alloc/free in bpf_local_storage_elem This patch uses bpf_mem_alloc for the task and cgroup local storage that the bpf prog can easily get a hold of the storage owner's PTR_TO_BTF_ID. eg. bpf_get_current_task_btf() can be used in some of the kmalloc code path which will cause deadlock/recursion. bpf_mem_cache_alloc is deadlock free and will solve a legit use case in [1]. For sk storage, its batch creation benchmark shows a few percent regression when the sk create/destroy batch size is larger than 32. The sk creation/destruction happens much more often and depends on external traffic. Considering it is hypothetical to be able to cause deadlock with sk storage, it can cross the bridge to use bpf_mem_alloc till a legit (ie. useful) use case comes up. For inode storage, bpf_local_storage_destroy() is called before waiting for a rcu gp and its memory cannot be reused immediately. inode stays with kmalloc/kfree after the rcu [or tasks_trace] gp. A 'bool bpf_ma' argument is added to bpf_local_storage_map_alloc(). Only task and cgroup storage have 'bpf_ma == true' which means to use bpf_mem_cache_alloc/free(). This patch only changes selem to use bpf_mem_alloc for task and cgroup. The next patch will change the local_storage to use bpf_mem_alloc also for task and cgroup. Here is some more details on the changes: * memory allocation: After bpf_mem_cache_alloc(), the SDATA(selem)->data is zero-ed because bpf_mem_cache_alloc() could return a reused selem. It is to keep the existing bpf_map_kzalloc() behavior. Only SDATA(selem)->data is zero-ed. SDATA(selem)->data is the visible part to the bpf prog. No need to use zero_map_value() to do the zeroing because bpf_selem_free(..., reuse_now = true) ensures no bpf prog is using the selem before returning the selem through bpf_mem_cache_free(). For the internal fields of selem, they will be initialized when linking to the new smap and the new local_storage. When 'bpf_ma == false', nothing changes in this patch. It will stay with the bpf_map_kzalloc(). * memory free: The bpf_selem_free() and bpf_selem_free_rcu() are modified to handle the bpf_ma == true case. For the common selem free path where its owner is also being destroyed, the mem is freed in bpf_local_storage_destroy(), the owner (task and cgroup) has gone through a rcu gp. The memory can be reused immediately, so bpf_local_storage_destroy() will call bpf_selem_free(..., reuse_now = true) which will do bpf_mem_cache_free() for immediate reuse consideration. An exception is the delete elem code path. The delete elem code path is called from the helper bpf_*_storage_delete() and the syscall bpf_map_delete_elem(). This path is an unusual case for local storage because the common use case is to have the local storage staying with its owner life time so that the bpf prog and the user space does not have to monitor the owner's destruction. For the delete elem path, the selem cannot be reused immediately because there could be bpf prog using it. It will call bpf_selem_free(..., reuse_now = false) and it will wait for a rcu tasks trace gp before freeing the elem. The rcu callback is changed to do bpf_mem_cache_raw_free() instead of kfree(). When 'bpf_ma == false', it should be the same as before. __bpf_selem_free() is added to do the kfree_rcu and call_tasks_trace_rcu(). A few words on the 'reuse_now == true'. When 'reuse_now == true', it is still racing with bpf_local_storage_map_free which is under rcu protection, so it still needs to wait for a rcu gp instead of kfree(). Otherwise, the selem may be reused by slab for a totally different struct while the bpf_local_storage_map_free() is still using it (as a rcu reader). For the inode case, there may be other rcu readers also. In short, when bpf_ma == false and reuse_now == true => vanilla rcu. [1]: https://lore.kernel.org/bpf/20221118190109.1512674-1-namhyung@kernel.org/ Cc: Namhyung Kim <namhyung@kernel.org> Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Link: https://lore.kernel.org/r/20230322215246.1675516-3-martin.lau@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2023-07-11 07:20:46 +00:00
struct bpf_local_storage_cache *cache,
bool bpf_ma);
bpf: Allow compiler to inline most of bpf_local_storage_lookup() JIRA: https://issues.redhat.com/browse/RHEL-23649 commit 68bc61c26cacf152baf905786b5949769700f40d Author: Marco Elver <elver@google.com> Date: Wed Feb 7 13:26:17 2024 +0100 bpf: Allow compiler to inline most of bpf_local_storage_lookup() In various performance profiles of kernels with BPF programs attached, bpf_local_storage_lookup() appears as a significant portion of CPU cycles spent. To enable the compiler generate more optimal code, turn bpf_local_storage_lookup() into a static inline function, where only the cache insertion code path is outlined Notably, outlining cache insertion helps avoid bloating callers by duplicating setting up calls to raw_spin_{lock,unlock}_irqsave() (on architectures which do not inline spin_lock/unlock, such as x86), which would cause the compiler produce worse code by deciding to outline otherwise inlinable functions. The call overhead is neutral, because we make 2 calls either way: either calling raw_spin_lock_irqsave() and raw_spin_unlock_irqsave(); or call __bpf_local_storage_insert_cache(), which calls raw_spin_lock_irqsave(), followed by a tail-call to raw_spin_unlock_irqsave() where the compiler can perform TCO and (in optimized uninstrumented builds) turns it into a plain jump. The call to __bpf_local_storage_insert_cache() can be elided entirely if cacheit_lockit is a false constant expression. Based on results from './benchs/run_bench_local_storage.sh' (21 trials, reboot between each trial; x86 defconfig + BPF, clang 16) this produces improvements in throughput and latency in the majority of cases, with an average (geomean) improvement of 8%: +---- Hashmap Control -------------------- | | + num keys: 10 | : <before> | <after> | +-+ hashmap (control) sequential get +----------------------+---------------------- | +- hits throughput | 14.789 M ops/s | 14.745 M ops/s ( ~ ) | +- hits latency | 67.679 ns/op | 67.879 ns/op ( ~ ) | +- important_hits throughput | 14.789 M ops/s | 14.745 M ops/s ( ~ ) | | + num keys: 1000 | : <before> | <after> | +-+ hashmap (control) sequential get +----------------------+---------------------- | +- hits throughput | 12.233 M ops/s | 12.170 M ops/s ( ~ ) | +- hits latency | 81.754 ns/op | 82.185 ns/op ( ~ ) | +- important_hits throughput | 12.233 M ops/s | 12.170 M ops/s ( ~ ) | | + num keys: 10000 | : <before> | <after> | +-+ hashmap (control) sequential get +----------------------+---------------------- | +- hits throughput | 7.220 M ops/s | 7.204 M ops/s ( ~ ) | +- hits latency | 138.522 ns/op | 138.842 ns/op ( ~ ) | +- important_hits throughput | 7.220 M ops/s | 7.204 M ops/s ( ~ ) | | + num keys: 100000 | : <before> | <after> | +-+ hashmap (control) sequential get +----------------------+---------------------- | +- hits throughput | 5.061 M ops/s | 5.165 M ops/s (+2.1%) | +- hits latency | 198.483 ns/op | 194.270 ns/op (-2.1%) | +- important_hits throughput | 5.061 M ops/s | 5.165 M ops/s (+2.1%) | | + num keys: 4194304 | : <before> | <after> | +-+ hashmap (control) sequential get +----------------------+---------------------- | +- hits throughput | 2.864 M ops/s | 2.882 M ops/s ( ~ ) | +- hits latency | 365.220 ns/op | 361.418 ns/op (-1.0%) | +- important_hits throughput | 2.864 M ops/s | 2.882 M ops/s ( ~ ) | +---- Local Storage ---------------------- | | + num_maps: 1 | : <before> | <after> | +-+ local_storage cache sequential get +----------------------+---------------------- | +- hits throughput | 33.005 M ops/s | 39.068 M ops/s (+18.4%) | +- hits latency | 30.300 ns/op | 25.598 ns/op (-15.5%) | +- important_hits throughput | 33.005 M ops/s | 39.068 M ops/s (+18.4%) | : | : <before> | <after> | +-+ local_storage cache interleaved get +----------------------+---------------------- | +- hits throughput | 37.151 M ops/s | 44.926 M ops/s (+20.9%) | +- hits latency | 26.919 ns/op | 22.259 ns/op (-17.3%) | +- important_hits throughput | 37.151 M ops/s | 44.926 M ops/s (+20.9%) | | + num_maps: 10 | : <before> | <after> | +-+ local_storage cache sequential get +----------------------+---------------------- | +- hits throughput | 32.288 M ops/s | 38.099 M ops/s (+18.0%) | +- hits latency | 30.972 ns/op | 26.248 ns/op (-15.3%) | +- important_hits throughput | 3.229 M ops/s | 3.810 M ops/s (+18.0%) | : | : <before> | <after> | +-+ local_storage cache interleaved get +----------------------+---------------------- | +- hits throughput | 34.473 M ops/s | 41.145 M ops/s (+19.4%) | +- hits latency | 29.010 ns/op | 24.307 ns/op (-16.2%) | +- important_hits throughput | 12.312 M ops/s | 14.695 M ops/s (+19.4%) | | + num_maps: 16 | : <before> | <after> | +-+ local_storage cache sequential get +----------------------+---------------------- | +- hits throughput | 32.524 M ops/s | 38.341 M ops/s (+17.9%) | +- hits latency | 30.748 ns/op | 26.083 ns/op (-15.2%) | +- important_hits throughput | 2.033 M ops/s | 2.396 M ops/s (+17.9%) | : | : <before> | <after> | +-+ local_storage cache interleaved get +----------------------+---------------------- | +- hits throughput | 34.575 M ops/s | 41.338 M ops/s (+19.6%) | +- hits latency | 28.925 ns/op | 24.193 ns/op (-16.4%) | +- important_hits throughput | 11.001 M ops/s | 13.153 M ops/s (+19.6%) | | + num_maps: 17 | : <before> | <after> | +-+ local_storage cache sequential get +----------------------+---------------------- | +- hits throughput | 28.861 M ops/s | 32.756 M ops/s (+13.5%) | +- hits latency | 34.649 ns/op | 30.530 ns/op (-11.9%) | +- important_hits throughput | 1.700 M ops/s | 1.929 M ops/s (+13.5%) | : | : <before> | <after> | +-+ local_storage cache interleaved get +----------------------+---------------------- | +- hits throughput | 31.529 M ops/s | 36.110 M ops/s (+14.5%) | +- hits latency | 31.719 ns/op | 27.697 ns/op (-12.7%) | +- important_hits throughput | 9.598 M ops/s | 10.993 M ops/s (+14.5%) | | + num_maps: 24 | : <before> | <after> | +-+ local_storage cache sequential get +----------------------+---------------------- | +- hits throughput | 18.602 M ops/s | 19.937 M ops/s (+7.2%) | +- hits latency | 53.767 ns/op | 50.166 ns/op (-6.7%) | +- important_hits throughput | 0.776 M ops/s | 0.831 M ops/s (+7.2%) | : | : <before> | <after> | +-+ local_storage cache interleaved get +----------------------+---------------------- | +- hits throughput | 21.718 M ops/s | 23.332 M ops/s (+7.4%) | +- hits latency | 46.047 ns/op | 42.865 ns/op (-6.9%) | +- important_hits throughput | 6.110 M ops/s | 6.564 M ops/s (+7.4%) | | + num_maps: 32 | : <before> | <after> | +-+ local_storage cache sequential get +----------------------+---------------------- | +- hits throughput | 14.118 M ops/s | 14.626 M ops/s (+3.6%) | +- hits latency | 70.856 ns/op | 68.381 ns/op (-3.5%) | +- important_hits throughput | 0.442 M ops/s | 0.458 M ops/s (+3.6%) | : | : <before> | <after> | +-+ local_storage cache interleaved get +----------------------+---------------------- | +- hits throughput | 17.111 M ops/s | 17.906 M ops/s (+4.6%) | +- hits latency | 58.451 ns/op | 55.865 ns/op (-4.4%) | +- important_hits throughput | 4.776 M ops/s | 4.998 M ops/s (+4.6%) | | + num_maps: 100 | : <before> | <after> | +-+ local_storage cache sequential get +----------------------+---------------------- | +- hits throughput | 5.281 M ops/s | 5.528 M ops/s (+4.7%) | +- hits latency | 192.398 ns/op | 183.059 ns/op (-4.9%) | +- important_hits throughput | 0.053 M ops/s | 0.055 M ops/s (+4.9%) | : | : <before> | <after> | +-+ local_storage cache interleaved get +----------------------+---------------------- | +- hits throughput | 6.265 M ops/s | 6.498 M ops/s (+3.7%) | +- hits latency | 161.436 ns/op | 152.877 ns/op (-5.3%) | +- important_hits throughput | 1.636 M ops/s | 1.697 M ops/s (+3.7%) | | + num_maps: 1000 | : <before> | <after> | +-+ local_storage cache sequential get +----------------------+---------------------- | +- hits throughput | 0.355 M ops/s | 0.354 M ops/s ( ~ ) | +- hits latency | 2826.538 ns/op | 2827.139 ns/op ( ~ ) | +- important_hits throughput | 0.000 M ops/s | 0.000 M ops/s ( ~ ) | : | : <before> | <after> | +-+ local_storage cache interleaved get +----------------------+---------------------- | +- hits throughput | 0.404 M ops/s | 0.403 M ops/s ( ~ ) | +- hits latency | 2481.190 ns/op | 2487.555 ns/op ( ~ ) | +- important_hits throughput | 0.102 M ops/s | 0.101 M ops/s ( ~ ) The on_lookup test in {cgrp,task}_ls_recursion.c is removed because the bpf_local_storage_lookup is no longer traceable and adding tracepoint will make the compiler generate worse code: https://lore.kernel.org/bpf/ZcJmok64Xqv6l4ZS@elver.google.com/ Signed-off-by: Marco Elver <elver@google.com> Cc: Martin KaFai Lau <martin.lau@linux.dev> Acked-by: Yonghong Song <yonghong.song@linux.dev> Link: https://lore.kernel.org/r/20240207122626.3508658-1-elver@google.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
2024-06-24 15:03:57 +00:00
void __bpf_local_storage_insert_cache(struct bpf_local_storage *local_storage,
struct bpf_local_storage_map *smap,
struct bpf_local_storage_elem *selem);
/* If cacheit_lockit is false, this lookup function is lockless */
static inline struct bpf_local_storage_data *
bpf_local_storage_lookup(struct bpf_local_storage *local_storage,
struct bpf_local_storage_map *smap,
bpf: Allow compiler to inline most of bpf_local_storage_lookup() JIRA: https://issues.redhat.com/browse/RHEL-23649 commit 68bc61c26cacf152baf905786b5949769700f40d Author: Marco Elver <elver@google.com> Date: Wed Feb 7 13:26:17 2024 +0100 bpf: Allow compiler to inline most of bpf_local_storage_lookup() In various performance profiles of kernels with BPF programs attached, bpf_local_storage_lookup() appears as a significant portion of CPU cycles spent. To enable the compiler generate more optimal code, turn bpf_local_storage_lookup() into a static inline function, where only the cache insertion code path is outlined Notably, outlining cache insertion helps avoid bloating callers by duplicating setting up calls to raw_spin_{lock,unlock}_irqsave() (on architectures which do not inline spin_lock/unlock, such as x86), which would cause the compiler produce worse code by deciding to outline otherwise inlinable functions. The call overhead is neutral, because we make 2 calls either way: either calling raw_spin_lock_irqsave() and raw_spin_unlock_irqsave(); or call __bpf_local_storage_insert_cache(), which calls raw_spin_lock_irqsave(), followed by a tail-call to raw_spin_unlock_irqsave() where the compiler can perform TCO and (in optimized uninstrumented builds) turns it into a plain jump. The call to __bpf_local_storage_insert_cache() can be elided entirely if cacheit_lockit is a false constant expression. Based on results from './benchs/run_bench_local_storage.sh' (21 trials, reboot between each trial; x86 defconfig + BPF, clang 16) this produces improvements in throughput and latency in the majority of cases, with an average (geomean) improvement of 8%: +---- Hashmap Control -------------------- | | + num keys: 10 | : <before> | <after> | +-+ hashmap (control) sequential get +----------------------+---------------------- | +- hits throughput | 14.789 M ops/s | 14.745 M ops/s ( ~ ) | +- hits latency | 67.679 ns/op | 67.879 ns/op ( ~ ) | +- important_hits throughput | 14.789 M ops/s | 14.745 M ops/s ( ~ ) | | + num keys: 1000 | : <before> | <after> | +-+ hashmap (control) sequential get +----------------------+---------------------- | +- hits throughput | 12.233 M ops/s | 12.170 M ops/s ( ~ ) | +- hits latency | 81.754 ns/op | 82.185 ns/op ( ~ ) | +- important_hits throughput | 12.233 M ops/s | 12.170 M ops/s ( ~ ) | | + num keys: 10000 | : <before> | <after> | +-+ hashmap (control) sequential get +----------------------+---------------------- | +- hits throughput | 7.220 M ops/s | 7.204 M ops/s ( ~ ) | +- hits latency | 138.522 ns/op | 138.842 ns/op ( ~ ) | +- important_hits throughput | 7.220 M ops/s | 7.204 M ops/s ( ~ ) | | + num keys: 100000 | : <before> | <after> | +-+ hashmap (control) sequential get +----------------------+---------------------- | +- hits throughput | 5.061 M ops/s | 5.165 M ops/s (+2.1%) | +- hits latency | 198.483 ns/op | 194.270 ns/op (-2.1%) | +- important_hits throughput | 5.061 M ops/s | 5.165 M ops/s (+2.1%) | | + num keys: 4194304 | : <before> | <after> | +-+ hashmap (control) sequential get +----------------------+---------------------- | +- hits throughput | 2.864 M ops/s | 2.882 M ops/s ( ~ ) | +- hits latency | 365.220 ns/op | 361.418 ns/op (-1.0%) | +- important_hits throughput | 2.864 M ops/s | 2.882 M ops/s ( ~ ) | +---- Local Storage ---------------------- | | + num_maps: 1 | : <before> | <after> | +-+ local_storage cache sequential get +----------------------+---------------------- | +- hits throughput | 33.005 M ops/s | 39.068 M ops/s (+18.4%) | +- hits latency | 30.300 ns/op | 25.598 ns/op (-15.5%) | +- important_hits throughput | 33.005 M ops/s | 39.068 M ops/s (+18.4%) | : | : <before> | <after> | +-+ local_storage cache interleaved get +----------------------+---------------------- | +- hits throughput | 37.151 M ops/s | 44.926 M ops/s (+20.9%) | +- hits latency | 26.919 ns/op | 22.259 ns/op (-17.3%) | +- important_hits throughput | 37.151 M ops/s | 44.926 M ops/s (+20.9%) | | + num_maps: 10 | : <before> | <after> | +-+ local_storage cache sequential get +----------------------+---------------------- | +- hits throughput | 32.288 M ops/s | 38.099 M ops/s (+18.0%) | +- hits latency | 30.972 ns/op | 26.248 ns/op (-15.3%) | +- important_hits throughput | 3.229 M ops/s | 3.810 M ops/s (+18.0%) | : | : <before> | <after> | +-+ local_storage cache interleaved get +----------------------+---------------------- | +- hits throughput | 34.473 M ops/s | 41.145 M ops/s (+19.4%) | +- hits latency | 29.010 ns/op | 24.307 ns/op (-16.2%) | +- important_hits throughput | 12.312 M ops/s | 14.695 M ops/s (+19.4%) | | + num_maps: 16 | : <before> | <after> | +-+ local_storage cache sequential get +----------------------+---------------------- | +- hits throughput | 32.524 M ops/s | 38.341 M ops/s (+17.9%) | +- hits latency | 30.748 ns/op | 26.083 ns/op (-15.2%) | +- important_hits throughput | 2.033 M ops/s | 2.396 M ops/s (+17.9%) | : | : <before> | <after> | +-+ local_storage cache interleaved get +----------------------+---------------------- | +- hits throughput | 34.575 M ops/s | 41.338 M ops/s (+19.6%) | +- hits latency | 28.925 ns/op | 24.193 ns/op (-16.4%) | +- important_hits throughput | 11.001 M ops/s | 13.153 M ops/s (+19.6%) | | + num_maps: 17 | : <before> | <after> | +-+ local_storage cache sequential get +----------------------+---------------------- | +- hits throughput | 28.861 M ops/s | 32.756 M ops/s (+13.5%) | +- hits latency | 34.649 ns/op | 30.530 ns/op (-11.9%) | +- important_hits throughput | 1.700 M ops/s | 1.929 M ops/s (+13.5%) | : | : <before> | <after> | +-+ local_storage cache interleaved get +----------------------+---------------------- | +- hits throughput | 31.529 M ops/s | 36.110 M ops/s (+14.5%) | +- hits latency | 31.719 ns/op | 27.697 ns/op (-12.7%) | +- important_hits throughput | 9.598 M ops/s | 10.993 M ops/s (+14.5%) | | + num_maps: 24 | : <before> | <after> | +-+ local_storage cache sequential get +----------------------+---------------------- | +- hits throughput | 18.602 M ops/s | 19.937 M ops/s (+7.2%) | +- hits latency | 53.767 ns/op | 50.166 ns/op (-6.7%) | +- important_hits throughput | 0.776 M ops/s | 0.831 M ops/s (+7.2%) | : | : <before> | <after> | +-+ local_storage cache interleaved get +----------------------+---------------------- | +- hits throughput | 21.718 M ops/s | 23.332 M ops/s (+7.4%) | +- hits latency | 46.047 ns/op | 42.865 ns/op (-6.9%) | +- important_hits throughput | 6.110 M ops/s | 6.564 M ops/s (+7.4%) | | + num_maps: 32 | : <before> | <after> | +-+ local_storage cache sequential get +----------------------+---------------------- | +- hits throughput | 14.118 M ops/s | 14.626 M ops/s (+3.6%) | +- hits latency | 70.856 ns/op | 68.381 ns/op (-3.5%) | +- important_hits throughput | 0.442 M ops/s | 0.458 M ops/s (+3.6%) | : | : <before> | <after> | +-+ local_storage cache interleaved get +----------------------+---------------------- | +- hits throughput | 17.111 M ops/s | 17.906 M ops/s (+4.6%) | +- hits latency | 58.451 ns/op | 55.865 ns/op (-4.4%) | +- important_hits throughput | 4.776 M ops/s | 4.998 M ops/s (+4.6%) | | + num_maps: 100 | : <before> | <after> | +-+ local_storage cache sequential get +----------------------+---------------------- | +- hits throughput | 5.281 M ops/s | 5.528 M ops/s (+4.7%) | +- hits latency | 192.398 ns/op | 183.059 ns/op (-4.9%) | +- important_hits throughput | 0.053 M ops/s | 0.055 M ops/s (+4.9%) | : | : <before> | <after> | +-+ local_storage cache interleaved get +----------------------+---------------------- | +- hits throughput | 6.265 M ops/s | 6.498 M ops/s (+3.7%) | +- hits latency | 161.436 ns/op | 152.877 ns/op (-5.3%) | +- important_hits throughput | 1.636 M ops/s | 1.697 M ops/s (+3.7%) | | + num_maps: 1000 | : <before> | <after> | +-+ local_storage cache sequential get +----------------------+---------------------- | +- hits throughput | 0.355 M ops/s | 0.354 M ops/s ( ~ ) | +- hits latency | 2826.538 ns/op | 2827.139 ns/op ( ~ ) | +- important_hits throughput | 0.000 M ops/s | 0.000 M ops/s ( ~ ) | : | : <before> | <after> | +-+ local_storage cache interleaved get +----------------------+---------------------- | +- hits throughput | 0.404 M ops/s | 0.403 M ops/s ( ~ ) | +- hits latency | 2481.190 ns/op | 2487.555 ns/op ( ~ ) | +- important_hits throughput | 0.102 M ops/s | 0.101 M ops/s ( ~ ) The on_lookup test in {cgrp,task}_ls_recursion.c is removed because the bpf_local_storage_lookup is no longer traceable and adding tracepoint will make the compiler generate worse code: https://lore.kernel.org/bpf/ZcJmok64Xqv6l4ZS@elver.google.com/ Signed-off-by: Marco Elver <elver@google.com> Cc: Martin KaFai Lau <martin.lau@linux.dev> Acked-by: Yonghong Song <yonghong.song@linux.dev> Link: https://lore.kernel.org/r/20240207122626.3508658-1-elver@google.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
2024-06-24 15:03:57 +00:00
bool cacheit_lockit)
{
struct bpf_local_storage_data *sdata;
struct bpf_local_storage_elem *selem;
/* Fast path (cache hit) */
sdata = rcu_dereference_check(local_storage->cache[smap->cache_idx],
bpf_rcu_lock_held());
if (sdata && rcu_access_pointer(sdata->smap) == smap)
return sdata;
/* Slow path (cache miss) */
hlist_for_each_entry_rcu(selem, &local_storage->list, snode,
rcu_read_lock_trace_held())
if (rcu_access_pointer(SDATA(selem)->smap) == smap)
break;
if (!selem)
return NULL;
if (cacheit_lockit)
__bpf_local_storage_insert_cache(local_storage, smap, selem);
return SDATA(selem);
}
void bpf_local_storage_destroy(struct bpf_local_storage *local_storage);
void bpf_local_storage_map_free(struct bpf_map *map,
struct bpf_local_storage_cache *cache,
int __percpu *busy_counter);
int bpf_local_storage_map_check_btf(const struct bpf_map *map,
const struct btf *btf,
const struct btf_type *key_type,
const struct btf_type *value_type);
void bpf_selem_link_storage_nolock(struct bpf_local_storage *local_storage,
struct bpf_local_storage_elem *selem);
bpf: Repurpose use_trace_rcu to reuse_now in bpf_local_storage Bugzilla: https://bugzilla.redhat.com/2221599 commit a47eabf216f77cb6f22ceb38d46f1bb95968579c Author: Martin KaFai Lau <martin.lau@kernel.org> Date: Tue Mar 7 22:59:25 2023 -0800 bpf: Repurpose use_trace_rcu to reuse_now in bpf_local_storage This patch re-purpose the use_trace_rcu to mean if the freed memory can be reused immediately or not. The use_trace_rcu is renamed to reuse_now. Other than the boolean test is reversed, it should be a no-op. The following explains the reason for the rename and how it will be used in a later patch. In a later patch, bpf_mem_cache_alloc/free will be used in the bpf_local_storage. The bpf mem allocator will reuse the freed memory immediately. Some of the free paths in bpf_local_storage does not support memory to be reused immediately. These paths are the "delete" elem cases from the bpf_*_storage_delete() helper and the map_delete_elem() syscall. Note that "delete" elem before the owner's (sk/task/cgrp/inode) lifetime ended is not the common usage for the local storage. The common free path, bpf_local_storage_destroy(), can reuse the memory immediately. This common path means the storage stays with its owner until the owner is destroyed. The above mentioned "delete" elem paths that cannot reuse immediately always has the 'use_trace_rcu == true'. The cases that is safe for immediate reuse always have 'use_trace_rcu == false'. Instead of adding another arg in a later patch, this patch re-purpose this arg to reuse_now and have the test logic reversed. In a later patch, 'reuse_now == true' will free to the bpf_mem_cache_free() where the memory can be reused immediately. 'reuse_now == false' will go through the call_rcu_tasks_trace(). Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Link: https://lore.kernel.org/r/20230308065936.1550103-7-martin.lau@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Artem Savkov <asavkov@redhat.com>
2023-07-10 13:32:12 +00:00
void bpf_selem_unlink(struct bpf_local_storage_elem *selem, bool reuse_now);
void bpf_selem_link_map(struct bpf_local_storage_map *smap,
struct bpf_local_storage_elem *selem);
struct bpf_local_storage_elem *
bpf_selem_alloc(struct bpf_local_storage_map *smap, void *owner, void *value,
bool charge_mem, gfp_t gfp_flags);
void bpf_selem_free(struct bpf_local_storage_elem *selem,
struct bpf_local_storage_map *smap,
bool reuse_now);
int
bpf_local_storage_alloc(void *owner,
struct bpf_local_storage_map *smap,
struct bpf_local_storage_elem *first_selem,
gfp_t gfp_flags);
struct bpf_local_storage_data *
bpf_local_storage_update(void *owner, struct bpf_local_storage_map *smap,
void *value, u64 map_flags, gfp_t gfp_flags);
u64 bpf_local_storage_map_mem_usage(const struct bpf_map *map);
bpf: Allow bpf_local_storage to be used by sleepable programs Bugzilla: https://bugzilla.redhat.com/2069046 Upstream Status: git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git commit 0fe4b381a59ebc53522fce579b281a67a9e1bee6 Author: KP Singh <kpsingh@kernel.org> Date: Fri Dec 24 15:29:15 2021 +0000 bpf: Allow bpf_local_storage to be used by sleepable programs Other maps like hashmaps are already available to sleepable programs. Sleepable BPF programs run under trace RCU. Allow task, sk and inode storage to be used from sleepable programs. This allows sleepable and non-sleepable programs to provide shareable annotations on kernel objects. Sleepable programs run in trace RCU where as non-sleepable programs run in a normal RCU critical section i.e. __bpf_prog_enter{_sleepable} and __bpf_prog_exit{_sleepable}) (rcu_read_lock or rcu_read_lock_trace). In order to make the local storage maps accessible to both sleepable and non-sleepable programs, one needs to call both call_rcu_tasks_trace and call_rcu to wait for both trace and classical RCU grace periods to expire before freeing memory. Paul's work on call_rcu_tasks_trace allows us to have per CPU queueing for call_rcu_tasks_trace. This behaviour can be achieved by setting rcupdate.rcu_task_enqueue_lim=<num_cpus> boot parameter. In light of these new performance changes and to keep the local storage code simple, avoid adding a new flag for sleepable maps / local storage to select the RCU synchronization (trace / classical). Also, update the dereferencing of the pointers to use rcu_derference_check (with either the trace or normal RCU locks held) with a common bpf_rcu_lock_held helper method. Signed-off-by: KP Singh <kpsingh@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20211224152916.1550677-2-kpsingh@kernel.org Signed-off-by: Artem Savkov <asavkov@redhat.com>
2022-06-10 13:12:53 +00:00
#endif /* _BPF_LOCAL_STORAGE_H */