2022-11-10 16:41:39 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
|
|
|
|
//! Kernel types.
|
|
|
|
|
2023-01-30 06:44:00 +00:00
|
|
|
use core::{
|
|
|
|
cell::UnsafeCell,
|
|
|
|
mem::MaybeUninit,
|
|
|
|
ops::{Deref, DerefMut},
|
|
|
|
};
|
|
|
|
|
|
|
|
/// Runs a cleanup function/closure when dropped.
|
|
|
|
///
|
|
|
|
/// The [`ScopeGuard::dismiss`] function prevents the cleanup function from running.
|
|
|
|
///
|
|
|
|
/// # Examples
|
|
|
|
///
|
|
|
|
/// In the example below, we have multiple exit paths and we want to log regardless of which one is
|
|
|
|
/// taken:
|
|
|
|
/// ```
|
|
|
|
/// # use kernel::ScopeGuard;
|
|
|
|
/// fn example1(arg: bool) {
|
|
|
|
/// let _log = ScopeGuard::new(|| pr_info!("example1 completed\n"));
|
|
|
|
///
|
|
|
|
/// if arg {
|
|
|
|
/// return;
|
|
|
|
/// }
|
|
|
|
///
|
|
|
|
/// pr_info!("Do something...\n");
|
|
|
|
/// }
|
|
|
|
///
|
|
|
|
/// # example1(false);
|
|
|
|
/// # example1(true);
|
|
|
|
/// ```
|
|
|
|
///
|
|
|
|
/// In the example below, we want to log the same message on all early exits but a different one on
|
|
|
|
/// the main exit path:
|
|
|
|
/// ```
|
|
|
|
/// # use kernel::ScopeGuard;
|
|
|
|
/// fn example2(arg: bool) {
|
|
|
|
/// let log = ScopeGuard::new(|| pr_info!("example2 returned early\n"));
|
|
|
|
///
|
|
|
|
/// if arg {
|
|
|
|
/// return;
|
|
|
|
/// }
|
|
|
|
///
|
|
|
|
/// // (Other early returns...)
|
|
|
|
///
|
|
|
|
/// log.dismiss();
|
|
|
|
/// pr_info!("example2 no early return\n");
|
|
|
|
/// }
|
|
|
|
///
|
|
|
|
/// # example2(false);
|
|
|
|
/// # example2(true);
|
|
|
|
/// ```
|
|
|
|
///
|
|
|
|
/// In the example below, we need a mutable object (the vector) to be accessible within the log
|
|
|
|
/// function, so we wrap it in the [`ScopeGuard`]:
|
|
|
|
/// ```
|
|
|
|
/// # use kernel::ScopeGuard;
|
|
|
|
/// fn example3(arg: bool) -> Result {
|
|
|
|
/// let mut vec =
|
|
|
|
/// ScopeGuard::new_with_data(Vec::new(), |v| pr_info!("vec had {} elements\n", v.len()));
|
|
|
|
///
|
|
|
|
/// vec.try_push(10u8)?;
|
|
|
|
/// if arg {
|
|
|
|
/// return Ok(());
|
|
|
|
/// }
|
|
|
|
/// vec.try_push(20u8)?;
|
|
|
|
/// Ok(())
|
|
|
|
/// }
|
|
|
|
///
|
|
|
|
/// # assert_eq!(example3(false), Ok(()));
|
|
|
|
/// # assert_eq!(example3(true), Ok(()));
|
|
|
|
/// ```
|
|
|
|
///
|
|
|
|
/// # Invariants
|
|
|
|
///
|
|
|
|
/// The value stored in the struct is nearly always `Some(_)`, except between
|
|
|
|
/// [`ScopeGuard::dismiss`] and [`ScopeGuard::drop`]: in this case, it will be `None` as the value
|
|
|
|
/// will have been returned to the caller. Since [`ScopeGuard::dismiss`] consumes the guard,
|
|
|
|
/// callers won't be able to use it anymore.
|
|
|
|
pub struct ScopeGuard<T, F: FnOnce(T)>(Option<(T, F)>);
|
|
|
|
|
|
|
|
impl<T, F: FnOnce(T)> ScopeGuard<T, F> {
|
|
|
|
/// Creates a new guarded object wrapping the given data and with the given cleanup function.
|
|
|
|
pub fn new_with_data(data: T, cleanup_func: F) -> Self {
|
|
|
|
// INVARIANT: The struct is being initialised with `Some(_)`.
|
|
|
|
Self(Some((data, cleanup_func)))
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Prevents the cleanup function from running and returns the guarded data.
|
|
|
|
pub fn dismiss(mut self) -> T {
|
|
|
|
// INVARIANT: This is the exception case in the invariant; it is not visible to callers
|
|
|
|
// because this function consumes `self`.
|
|
|
|
self.0.take().unwrap().0
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl ScopeGuard<(), fn(())> {
|
|
|
|
/// Creates a new guarded object with the given cleanup function.
|
|
|
|
pub fn new(cleanup: impl FnOnce()) -> ScopeGuard<(), impl FnOnce(())> {
|
|
|
|
ScopeGuard::new_with_data((), move |_| cleanup())
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T, F: FnOnce(T)> Deref for ScopeGuard<T, F> {
|
|
|
|
type Target = T;
|
|
|
|
|
|
|
|
fn deref(&self) -> &T {
|
|
|
|
// The type invariants guarantee that `unwrap` will succeed.
|
|
|
|
&self.0.as_ref().unwrap().0
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T, F: FnOnce(T)> DerefMut for ScopeGuard<T, F> {
|
|
|
|
fn deref_mut(&mut self) -> &mut T {
|
|
|
|
// The type invariants guarantee that `unwrap` will succeed.
|
|
|
|
&mut self.0.as_mut().unwrap().0
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T, F: FnOnce(T)> Drop for ScopeGuard<T, F> {
|
|
|
|
fn drop(&mut self) {
|
|
|
|
// Run the cleanup function if one is still present.
|
|
|
|
if let Some((data, cleanup)) = self.0.take() {
|
|
|
|
cleanup(data)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2022-11-10 16:41:40 +00:00
|
|
|
|
|
|
|
/// Stores an opaque value.
|
|
|
|
///
|
|
|
|
/// This is meant to be used with FFI objects that are never interpreted by Rust code.
|
|
|
|
#[repr(transparent)]
|
|
|
|
pub struct Opaque<T>(MaybeUninit<UnsafeCell<T>>);
|
|
|
|
|
|
|
|
impl<T> Opaque<T> {
|
|
|
|
/// Creates a new opaque value.
|
|
|
|
pub const fn new(value: T) -> Self {
|
|
|
|
Self(MaybeUninit::new(UnsafeCell::new(value)))
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Creates an uninitialised value.
|
|
|
|
pub const fn uninit() -> Self {
|
|
|
|
Self(MaybeUninit::uninit())
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Returns a raw pointer to the opaque data.
|
|
|
|
pub fn get(&self) -> *mut T {
|
|
|
|
UnsafeCell::raw_get(self.0.as_ptr())
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2022-11-10 16:41:39 +00:00
|
|
|
/// A sum type that always holds either a value of type `L` or `R`.
|
|
|
|
pub enum Either<L, R> {
|
|
|
|
/// Constructs an instance of [`Either`] containing a value of type `L`.
|
|
|
|
Left(L),
|
|
|
|
|
|
|
|
/// Constructs an instance of [`Either`] containing a value of type `R`.
|
|
|
|
Right(R),
|
|
|
|
}
|